配合智能电表趋势的安森美半导体PLC技术及解决方案

2012-07-27 15:02:01
分享到:
标签:

 

当今很多国家都已采用或即将部署智能电表系统,并采用自动远程集抄方式。目前备受关注的是法国ERDF的Linky电表项目。欧盟最大的电力配电网运营商、法国电力集团(EDF)的子公司——法国电网输送公司(ERDF)已经启动了一个涉及总数目3,500万只电表的项目。从2012年至2017年,该项目将把法国国内的传统电表统一更换成新型的Linky智能电表。这类智能电表通信采用了扩频的频移键控(S-FSK)电力线载波(PLC)技术。
 
安森美半导体在电表领域积累了十多年的丰富经验,为这一重要且快速增长的智能电表市场提供通用及稳定的方案,包括最新推出的PLC调制解调器系统级芯片(SoC),可广泛用于智能电表、远程控制/家居显示屏(IHD)、太阳能逆变器、智能插座及智能街道照明等应用。
 
安森美半导体的PLC调制解调器技术特点及优势
安森美半导体在电力线载波调制解调器领域拥有10年的在传统及分体式电表抄表的应用及400多万片量产验证经验。此前先后推出了AMIS-30585和AMIS-49587 PLC S-FSK调制解调器方案,这两款均支持采用24 MHz时钟的ARM7TDMi内核,支持的载波速率分别为1,200bps和2,400bps,支持欧洲电工标准化委员会(CENELEC)频段,分别是A(9--95 kHz)和A,B(9-125kHz)频段。
 
以AMIS-49587 PLC调制解调器为例,它提供高集成度、符合IEC61334-5-1标准的低功耗PLC方案,用于智能电表系统自动读表及管理、街道照明控制、智能电力插头(power plug)和建筑物自动化等应用。AMIS-49587提供集成单芯片方案,帮助简化设计、降低开发及应用成本,并加速上市进程。它基于ARM7TDMI处理器内核,同时内嵌了物理层和(MAC)层。而大多数竞争方案需要复杂的嵌入式软件来执行与AMIS-49587相同的功能。它具有自动中继器(repeater)功能,进一步提高通信可靠性,通信成功率比其它可选及现有方案更高。AMIS49587藉板载低抖动锁相环(PLL)与交流主电源(mains)信号同步,内嵌的滤波器提供优异的白噪声(white noise)及窄带干扰抑制性能。AMIS-49587具备高集成度和内嵌协议处理,设计人员无需涉及PHY和MAC协定传输细节问题。这器件能够帮助节省多达50%的软件开发耗费,从而加快上市时间,降低总成本。
 
AMIS-49587是一体式方案,支持PLC现场部署要求的3种不同模式:MASTER (集中器)、SLAVE (电表)和SPY (给测试人员的原始数据)。本地微控制器(MCU)至PLC调制解调器进行串行通信,它是半双工,标准不归零(NRZ)格式,8个数据位1个停止位,可设定波特率(4,800、9,600、19,200和38,400波特)、3.3 V额定供电电压(通信引脚电平容限为5 V)。
 
这种PLC调制解调器具有许多优势。例如,片上实现物理层(PHY)和媒体访问控制器(MAC)层,重点在于应用层能在不到一个季度的时间内开发出全套互操作PLC方案,因此方案更安全、上市速度更快。此外,安森美半导体在此领域积累的现场10年、400万片量产验证了该方案的可靠性。同时,自动应用可信值/中继提供了通信可靠性的保证。由于包含16位分辨率的模拟前端,它也具有极优的噪声免疫性,免受不同类型噪声影响。
 
这种PLC调制解调器的优势包括:组网方式灵活,方便维护;采用易用/藉串行接口配置;同时兼容单相和多相;该方案比基于数字信号处理器(DSP)的方案能耗更低。
 
图1:PLC调制解调器AMIS-49587及PLC线路驱动器NCS5650应用电路图
 
图(1)中方案的核心是PLC 调制解调器,AMIS-49587。为了增大发送信号功率Line Driver NCS5650把信号滤波放大后,通过变压器将S-FSK信号耦合到到电网上。NCS5650的电流驱动能力高达2A,其双级运放结构只需要几个阻容器件就可以配置成4阶低通滤波器,滤除掉载波频率以上的高频谐波,防止其进入配电网。高阶滤波器的设置是为了满足欧盟严格的电力线信号注入标准的要求,比如EN 50065。
 
FSK的接收是将变压器耦合过来的信号经过49587内部运放组成的滤波器进行高通滤波,滤除50Hz信号后,再在内部进行FSK解调,以还原成数字信号。IEC 61334-5-1的系统需要50Hz过零信号同步,49587有过零检测引脚对50Hz进行检测。如果系统对隔离有严格要求,50Hz检测信号可以增加光电耦合器进行隔离。
 
安森美半导体最新多载波PLC调制解调器NCN49597概览
NCN49597是安森美半导体新系列PLC调制解调器的最新产品,集成了低功耗32位ARM Cortex M0处理器及高精度模拟前端,可以支持多种协议。该器件基于双4,800波特扩频型频移键控通道技术,优化了能效和性能,同时提供极佳的强固性及可靠性,使其能在最严格的环境下工作。
 
NCN49597完全符合现行的IEC61334-5-1标准,同时与其前身AMIS49587保持引脚对引脚及功能兼容性,从AMIS-49587可以很容易地升级至NCN49597。新器件增加了多种创新特性,如现场可编程(32kB空间)双载波、自动位同步(Auto Bit Sync),以提升通信稳定性,简化应用及使用。
 
NCN49597支持多种协议,符合欧洲电工标准化委员会(CENELEC) A至D(9-148.5kHz)频段的可编程载波频率,速度更高,更稳定。这器件能够采用50 Hz或60 Hz的交流(AC)电压及直流(DC)电压工作,增大了其应用范围。它可以直接驱动LCD液晶屏,具有更高信噪比和更宽的载波频段。NCN49597多载波技术采用并行的两个S-FSK载波通道,每个通道都有两组载波,波特率可达4800 bps;每个通道内的载波可以互相穿插。
 
安森美半导体PLC调制解调器技术支持
安森美半导体为PLC调制解调器提供全面的技术支持。评估套件AMIS-49587EVK包含2个PLC调制解调器,用于客户端与服务器之间配置通信;套件包含的开源图形用户界面(GUI)可用于配置端到端通信。软件支持的PC工具包括可以用来测试和评估载波通信的PLC终端工具;工具使用C#开发,有可以在Linux平台上运行的版本。为了提高客户的开发速度,安森美半导体还提供PLC模块系统(图2)和PLC模块产品(图3)。
 
图2:PLC模块系统图
 
图3:PLC模块
 
结论
安森美半导体服务于PLC智能电表领域已有十多年的经验,先后推出了AMIS-30585和AMIS-49587等经过验证的PLC调制解调器产品及NCS5650 PLC线路驱动器,这些产品具有先进的技术特点及应用优势。安森美半导体最新推出的NCN49597 PLC调制解调器系统级芯片(SoC),使用了诸如ARM Cortex等经证明的技术,使得应用方案既没有风险且简便易用,是智能电表等应用的理想选择。安森美半导体同时提供包括评估套件、软件、PLC模块系统及PLC模块产品等在内的技术支持,帮助客户加快产品开发及上市进程。
 

 

 

深入阅读:
智能电表原理及应用特点介绍
安森美半导体推出电力线载波(PLC)调制解调器SoC
实现智能电网的开放式标准G3-PLC知多少?
智能电网AMI中的智能电表系统设计
让智能电表更加省电

 

立即加入模拟与电源技术社区

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
安森美半导体和 ConvenientPower Systems宣布 汽车无线充电的战略合作

推动高能效创新的安森美半导体宣布与 ConvenientPower Systems (CPS) 的战略合作,CPS 将采用安森美半导体的 NCV6500专用电源管理控制器设计、开发及推销车载无线充电方案。

安森美半导体全新开发套件实现无电池的智能无源传感器 在物联网中的快速应用

推动高能效创新的安森美半导体宣布推出一套完整的无线无电池感测方案套件(SPSDEVK1) ,使其创新的智能无源传感器快速应用于物联网 (IoT)应用。SPSDEVK1方案套件“即插即用”,用户可马上用来测量、采集和分析数据,用于各种IoT应用。

安森美半导体AR0430图像传感器获2018 CES创新大奖
安森美半导体AR0430图像传感器获2018 CES创新大奖

推动高能效创新的安森美半导体发布全新1/3.2英寸、400万像素(MP) 的背照式(BSI) CMOS数字图像传感器。AR0430图像传感器拥有120帧/秒的速率,支持4 MP模式的慢动作视频。

安森美半导体推出可扩展图像传感器平台用于ADAS和自动驾驶以加快并简化设计和实施

推动高能效创新的安森美半导体,发布可扩展的CMOS图像传感器系列,以满足先进驾驶辅助系统(ADAS)和自动驾驶的各种应用。

安森美半导体加入CharIN生态系统,共同开发电动汽车充电标准

推动高能效创新的安森美半导体已经加入全球电动汽车充电接口倡议组织(CharIN)生态系统。CharIN的目标是推广电动汽车(EV)充电系统标准,制订电动汽车充电系统发展要求,以及面向采用充电系统的汽车厂商开发认证系统。

更多资讯
新的、易于使用的充电架构USB-C架构详解
新的、易于使用的充电架构USB-C架构详解

USB-C接口正在彻底改变电子设备的充电方式。USB-C连接线无论哪一端都能连接智能手机或超级本。物理上,C型连接器既是双向的(无论线缆的哪一端都能插入两头的设备),也是无极性的(连接器插入时可以正面朝上,也可以反面朝上)。在协商过程中,连接系统可以电子地分辨出电极性。

详解单端信号与差分信号
详解单端信号与差分信号

差分传输是一种信号传输的技术,区别于传统的一根信号线一根地线的做法,差分传输在这两根线上都传输信号,这两个信号的振幅相等,相位相差180度,极性相反。在这两根线上传输的信号就是差分信号。

单端-差分信号转换器电路分析
单端-差分信号转换器电路分析

单端输入指信号有一个参考端和一个信号端构成,参考端一般为地端,差分是将单端信号进行差分变换,输出两个信号,一个和原信号同相,一个和原信号反相。差分信号有较强的抗共模干扰能力,适合较长距离传输,单端信号则没有这个功能。

亿纬锂能2017年财报:锂离子电池业务双增长

亿纬锂能1月15日晚间发布公告称,公司2017年预计盈利3.78亿元-4.28亿元,同比增长50%-70%;锂原电池业务实现持续快速的增长,消费类锂离子电池业务实现了营业收入和净利润的双增长。

盘点 | 2017年度锂电十大并购案:金沙江资本10亿美元收购日产电池领衔
盘点 | 2017年度锂电十大并购案:金沙江资本10亿美元收购日产电池领衔

据统计,2017年锂电行业发生了大大小小的并购案至少30起,平均12天就发生一起,密度之大令人震惊。在这些并购案中,小编选出10个巨额交易作为目标进行分析。

Moore8直播课堂
电路方案