请勿使用我曾教您使用的电阻

2017-04-20 15:41:00 来源:EEFOCUS
分享到:
标签:

按照许多年前老师的教导,我们会在运算放大器的两个输入端放上相等的阻抗。本文探究为什么会有这么一条经验法则,以及我们是否应当遵循这种做法。

老师的教导
如果您是在741运算放大器1横行天下的时代长大的,那么平衡运算放大器输入端电阻的观念必定已扎根在您的头脑中。随着时间的流逝,由于不同电路技术和不同IC工艺的出现,这样做可能不再是对的。事实上,它可能引起更大直流误差和更多噪声,使电路更不稳定。我们以前为什么要那样做?什么变化导致我们现在这样做可能是错误的?

在二十世纪六十年代和七十年代,第一代运算放大器采用普通双极性工艺制造。为获得合理的速度,差分对电流源电流一般在10 μA到20 μA范围内。

而β值为40到70,故输入偏置电流在1 μA左右。然而,晶体管匹配度不是那么高,所以输入偏置电流不相等,导致输入偏置电流之间有10%到20%的偏差(称为“输入失调电流”)。

在同相接地输入端增加一个与输入电阻R1和反馈电阻R2的并联组合相等的电阻(图1中的R3),可以让阻抗相等。做一些计算可以证明,误差降至Ioffset × Rfeedback。由于Ioffset为Ibias的10%到20%,所以这会有助于降低输出失调误差。

 


图1.经典反相放大器


直流误差
为降低双极性运算放大器的输入偏置电流,许多运算放大器设计集成了输入偏置电流消除功能。OP07就是一个例子。输入偏置电流消除功能的增加2使偏置电流大大降低,但输入失调电流可能为剩余偏置电流的50%到100%,所以增加电阻的作用非常有限。某些情况下,增加电阻反而可能导致输出误差提高。

噪声
电阻热噪声的计算公式为√4kTRB,故1 kΩ电阻会有4 nV/√Hz的噪声。增加电阻会增加噪声。在图2中,出人意料的是,虽然909 Ω补偿电阻是值最低的电阻,但由于从该节点到输出端的噪声增益,它给图2输出端贡献的噪声最多。R1引起的输出噪声为40 nV/√Hz,R2为12.6 nV/√Hz,R3为42 nV/√Hz。因此,请勿使用电阻。另一方面,如果运算放大器采用双电源供电,并且一个电源先于另一个电源上电,那么ESD网络可能发生闩锁问题。这种情况下,可能希望增加一定的电阻来保护器件。但若使用的话,应在电阻上放置一个旁路电容以减少电阻的噪声贡献。

 


图2.噪声分析


稳定性
所有运算放大器都有一定的输入电容,包括差分和共模。如果运算放大器连接为跟随器,并且在反馈路径中放入一个电阻以平衡阻抗,那么系统可能容易发生振荡。原因是:大反馈电阻、运算放大器的输入电容和PC板上的杂散电容会形成一个RC低通滤波器(LPF)。此滤波器会引起相移,并降低闭环系统的相位裕量。如果降低得太多,运算放大器就会振荡。一位客户在一个1 Hz Sallen-Key低通滤波器电路中使用AD8628 CMOS运算放大器。由于转折频率较低,电阻和电容相当大(参见图3)。输入电阻为470 kΩ,所以客户在反馈路径中放入一个470 kΩ电阻。此电阻与8 pF的输入电容(参见图4)一起提供一个42 kHz极点。AD8628的增益带宽积为2 MHz,因此它在42 kHz仍有大量增益,它发生了轨到轨振荡。把470 kΩ电阻换成0 Ω跳线即解决了问题。因此,反馈路径中应避免使用大电阻。这里,何者为大取决于运算放大器的增益带宽。对于高频运算放大器,例如增益带宽超过400 MHz的ADA4817-1,1 kΩ反馈电阻就称得上是大电阻。务必阅读数据手册以了解其中的建议。

 


图3.您所见

 


图4.电子所见


结语
多年来的实践会产生一些有用的经验法则。审核设计时,仔细检视这些规则,判定它们是否仍然适用是很好的做法。关于是否需要增加平衡电阻,如果运算放大器是带有输入偏置电流消除功能的CMOS、JFET或双极型,那么很可能不需要添加。

 

继续阅读
快速识别电阻、电容、电感,你需要这些办法

电阻是导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。

Vishay推出汽车级Power Metal Strip 电池旁路电阻---WSBS8518...14
Vishay推出汽车级Power Metal Strip 电池旁路电阻---WSBS8518...14

日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,发布新的汽车级Power Metal Strip®电池旁路电阻---WSBS8518...14。该电阻的功率密度达到36W,采用8518外形尺寸,在接头上镀锡。

Bourns 推出全新款抗硫化固定电阻 产品应用可靠性再升级
Bourns 推出全新款抗硫化固定电阻 产品应用可靠性再升级

Bourns-全球知名电子组件领导制造供货商,近期大力扩展抗硫化电阻产品,并于日前新增了八款全新厚膜精密芯片电阻,专门用在高硫化污染的恶劣操作环境下。

5G技术重塑通讯市场,RF前端模块有望爆发“第二春”?

5G带来新的天线滤波需求,手机射频前端(RFFront-end)组件市场规模可望因此大幅成长。根据研究机构Yole Développement预测,智能型手机使用的RF前端模块与组件市场,2016年产值为101亿美元,到了2022年,预计将会成长至227亿美元。

凌力尔特公司推出 10GHz 增益带宽积双差分放大器 LTC6419
凌力尔特公司推出 10GHz 增益带宽积双差分放大器 LTC6419

加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 和马萨诸塞州诺伍德 (NORWOOD, MA) – 2017 年 3 月22 日 – 亚德诺半导体 (Analog Devices, Inc.,简称 ADI) 旗下凌力尔特公司推出 10GHz 增益带宽积双差分放大器 LTC6419。

更多资讯
模拟混合验证官 | Model的本质目标就是“时间+精度”

这篇文章,主要是Model的概览。做Model的本质目的是为了什么?想达到此目的的幕后推手是谁?做Model最核心的思想是什么;现在流行的 Model都有哪些种类,可以分成几个等级?和Model相关的、零散的、但是却很有用的概念有哪些?现有EDA工具中有哪些和Model相关的产品?且 听此文介绍。

电源之旅:全新集成式器件通过隔离栅传输电力与数据
电源之旅:全新集成式器件通过隔离栅传输电力与数据

炎炎夏日,通过调节恒温器来驱散空气中的暑热使很多高压电路重新出现在我们的视野中,其中也包括那些可以驱动空调压缩机和鼓风电动机的高压电路。空调压缩机和鼓风电动机能使整个住宅凉爽下来,让人们夏天的生活变得更加舒适。

4200A-CVIV多开关使测试时间缩短30倍
4200A-CVIV多开关使测试时间缩短30倍

把各种测量集成到器件特性分析中最困难的问题之一,是每种测量类型基本上都要求不同的线缆。选择与测量类型配套的线缆增强了测量完整性。

Littelfuse新推PLEDxN系列LED开路保护器
Littelfuse新推PLEDxN系列LED开路保护器

Littelfuse, Inc.,作为全球电路保护领域的领先企业,今日宣布推出了PLEDxN系列LED开路保护器。

了解您的栅极驱动器
了解您的栅极驱动器

观看视频系列,“了解您的栅极驱动器”。 栅极驱动器虽然经常被忽视,但是它在电源和电机控制系统等系统中发挥着很重要的作用。

微话题

说说你心目中的龙芯处理器

国产CPU何去何从……
Moore8直播课堂
EMC专家武晔卿系列6-EMC与安规设计、热设计、可靠性、工艺的技术冲突

EMC专家武晔卿系列6-EMC与安规设计、热设计、可靠性、工艺的技术冲突

2017-05-02 20:00:00
一个好的电子产品,除了产品自身的功能以外,电磁兼容设计的技术水平,对产品的质量和技术性能指标起到非常关键的作用。很多人从事电子线路设计的时候,都是从认识电子元器件开始,但对电磁兼容设计却无从下手。
STM32快速开发笔记——外部中断之EXTI

STM32快速开发笔记——外部中断之EXTI

2017-05-02 20:00:00
以前,嵌入式MCU功能简单、种类较少,软件开发起来相对容易,而今天,MCU功能强大、种类繁多,软件中实现的功能也要比以前更多更复杂。 此次课程,针对基于ARM的STM32 MCU,将利用STM3
智能车老司机chiusir解读电磁导航原理与k66核心算法

智能车老司机chiusir解读电磁导航原理与k66核心算法

2017-04-16 20:00:00
提及智能车竞赛,所有电子相关专业的大学生或多或少都参加此类比赛,也承载了数万学子青春奋斗的美好,无数次通宵达旦只为在赛场上那千分之一秒的激情。但对于很多初入比赛的鲜肉来说,无尽的资料手册、新的赛制
PID控制理论知识准备

PID控制理论知识准备

2017-04-28 21:00:00
小马哥STM32课程系列直播-如何两个月做出自己的暴力空心杯小四轴 主讲内容:PID控制理论知识准备 直播时间:2017/04/28  21:00 欢迎加入摩尔吧直播交流群:官方1群5312
EMC专家武晔卿系列5—EMC器件的选型(结构布局与材料篇)

EMC专家武晔卿系列5—EMC器件的选型(结构布局与材料篇)

2017-04-27 20:00:00
一个好的电子产品,除了产品自身的功能以外,电磁兼容设计的技术水平,对产品的质量和技术性能指标起到非常关键的作用。很多人从事电子线路设计的时候,都是从认识电子元器件开始,但对电磁兼容设计却无从下手。