千万别误解功率因数

2017-11-09 13:48:00 来源:EEFOCUS
分享到:
标签:
经常有人问电源逆变器功率因数应该是在怎么样的负载条件下测量的,阻性、容性、还是感性?其实这里边存在一个很大的理解误区,忽视这种误区可能会导致逆变器的生产厂家和使用厂家出现比较严重的分歧。
 
日常所用的交流电在纯电阻负载上的电压和电流是同相位的,即相位差q = 0°,如图 1左图所示;交流电在纯电容负载上的电压和电流关系是电流超前电压90°(q =90°),如图 1中图所示;交流电在纯电感负载上的电压和电流关系是电流滞后电压90°(q = -90°),如图 1右图所示。
 
图 1  电压电流关系
 
在电阻负载上的有功功率就是视在功率,即二者相等,所以功率因数λ=1。而在纯电容和纯电感负载上的电流和电压相位差90°,所以所以功率因数λ = cos90°=0,即在纯电容和纯电感负载上的有功功率为零。
 
从这里可以看出一个问题,同样是一个电源,对于不同性质的负载其输出地功率的大小和性质也不同,因此可以说负载的性质决定着电源的输出。换言之,电源的输出不取决于电源的本身,就像一座水塔的供水水流取决于水龙头的开启程度,如图2。
 
图 2  水塔与水龙头
 
从上面的讨论可以看出,功率因数是表征负载性质和大小的一个参数。而且一般说一个负载只有一种性质,就像一个人只有一个身份证号码一样。这种性质的确定是从负载的输入端看进去,称为负载的输入功率因数。一个负载电路完成了,它的输入功率因数也就定了。
 
比如UPS作为前面市电或发电机的负载而言,比如六脉冲整流输入的UPS,其输入功率因数就是0.8,不论前面是市电电网还是发电机,比如要求输入100kVA的视在功率,都需要向前面的电源索取80kW的有功功率和60kvar的无功功率。如果UPS的输入功率因数是0.6,就需要向前面的电源索取60kW的有功功率和80kvar的无功功率。像这样的输出分配,前面电源是“无权”决定的。
 
负载功率因数又如何表征?
众所周知,在很早以前人们穿的衣服都是由裁缝按照每个人的尺寸一对一制作的,到了现代由于社会的发展和分工,出现了很多工业。比如服装工业需要预先做出各种各样的衣服以供社会需要,问题是做多大的衣服?什么颜色的衣服?这就需要事先有个规划,这个规划就来自于社会人群,多数人的尺码是多大,喜欢的款式是怎么样的?于是就制定出各种大小,也就是多少多少码。电源行业中的UPS电源也是这样,这也是逆变器的一种,总不能一对一地制造,也要事先根据当前用电器的形式和规模预先制造出一批或几批不同功率因数和功率规格的机器,以备市场现货销售。预先制造出一批或几批UPS的根据就是负载功率因数。当UPS的负载功率因数与负载的输入功率因数相等时,就称为完全匹配,UPS就可输出全部功率。图 3显示出了UPS负载功率因数与负载输入功率因数的关系。
 
图 3  UPS负载功率因数与输出功率因
 
正是由于有的用户将负载功率因数误认为是设备的“输出功率因数”,不但将归属关系搞错了,而且还引出了一个根本不存在的概念。既然是“设备的输出功率因数”,那么设备的输出功率就必须服从这个功率因数值,也就是说“功率因数为0.8的100kVA 设备在带线性负载时也应给出80kW的输出功率”。如果这种误解仅仅是个别用户,最多导致用户和供应商方面的矛盾。但如果是制定标准者陷入这个误区,危害就是全国的设备制造商。国内ZLG致远电子的PA8000功率分析仪可同步测量各类电力设备(如UPS、逆变器、整流器等)的输入功率因数和负载功率因数。避免误解再次发生。
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
新款TI C2000 Piccolo微控制器 帮助开发人员在成本敏感的电源控制应用中实现效率最大化

德州仪器(TI)近日推出C2000™ Piccolo™微控制器(MCU)产品组合的最新产品。新型C2000 F28004x MCU系列针对电动汽车车载充电器、电机控制逆变器和工业电源等成本敏感型应用的电源控制进行优化,具有卓越的性能。

怎样设计出高可靠性电源电路,看完这篇文章你就懂了
怎样设计出高可靠性电源电路,看完这篇文章你就懂了

开关电源是各种系统的核心部分。开关电源的需求越来越大,同时对可靠性提出了越来越高的要求。

弄懂有关漏电保护器的这16问,那就厉害了
弄懂有关漏电保护器的这16问,那就厉害了

漏电时可驱动闸刀开关K1断开,每个桥臂用两只1N4007串联可提高耐压。

35V 可热插拔的超级电容器后备电源控制器 提供不间断电源、保护和监视
35V 可热插拔的超级电容器后备电源控制器  提供不间断电源、保护和监视

Analog Devices, Inc. (ADI) 宣布推出 Power by Linear 的 LTC3351,该器件是一款超级电容器充电器和后备电源控制器 IC,包括了热插拔前端保护以及所有必要功能,以提供一个完整、独立、基于电容器的后备电源解决方案。

想提高储能电池管理系统可靠性,你可以这么做
想提高储能电池管理系统可靠性,你可以这么做

大型电池阵列可以作为备份和连续供电的能量存储体系,这种用法正在得到越来越多的关注,特斯拉汽车公司不久前推出的家用和商用Powerwall体系证明了这一点。

更多资讯
面板零部件企业陷低价竞争,台湾厂商混得有多惨

中国大陆面板新厂林立,研调机构WitsView副总经理邱宇彬表示,陆面板厂用本土零组件,在台湾面板厂产能扩充停滞情况下,台湾面板上游零组件厂因缺乏市场,经营不易。

挥起专利大棒,亿光要跟首尔半导体打持久战?

LED封装大厂亿光今天表示,控告首尔半导体及其经销商侵害亿光专利技术的诉讼案件仍进行中,亿光坚信该专利为有效,将捍卫客户及股东权益。

这个团队研发出激光充电技术,有啥现实意义?
这个团队研发出激光充电技术,有啥现实意义?

无线充电可能很快就会实现了。华盛顿大学(UW)的研究人员已经开发出一种使用激光来安全地给手机充电。

新一代Power PROFET诞生,能给汽车配电系统带来啥好处?

约25年前,市面上出现首款PROFET产品(PROtected mosFET,保护型MOSFET),意味各种不同汽车车体应用的继电器与保险丝,终于出现替代选择。

柔性LED显示屏研发取得重大突破,这是目前可拉伸的极限了?
柔性LED显示屏研发取得重大突破,这是目前可拉伸的极限了?

据日本媒体报道,东京大学教授染谷隆夫(电子工程学)的研究团队成功研发出了一种可褶皱可拉伸的超薄LED显示屏幕,主要用于医疗系统。

Moore8直播课堂
电路方案