开关混频器的原理及实现

2017-12-11 15:12:38 来源:AET
标签:
 
详细推导了开关混频的数学过程,并在此基础上给出了其具体实现方式。理论和实践表明,基于模拟开关的混频方式可以克服传统非线性元件或者乘法器混频方式的缺陷,消除本振信号的影响,最大限度地保留输入信号的参数信息。
 
0引言
*基金项目:国家自然科学基金项目(11602300)
通常混频采用非线性元件或者专用的乘法器来实现,这种混频方式不可避免地会在输出信号中引入本振信号的幅度和相位信息,这往往是所不希望的。并且不论非线性元件或者专用的乘法器都会产生很多干扰和失真,包括干扰哨声、寄生通道干扰、交叉调制失真、互相调制失真,这些均会对接收机性能产生不良影响。开关混频方式可以有效抑制以上因素的影响。
 
1混频原理
混频电路也叫变频电路(Mixer, Convertor),是超外差接收机的重要组成部分,它可实现不失真的频谱搬移[1]。
 
通常实现混频可以采用多种方式,最常用的是相乘电路,它可以采用非线性器件或者专用的集成电路乘法器来实现。假设乘法器的两个输入信号分别为:
 
v1=Acos(ω1t+φ1),v2=Acos(ω2t+φ2),
 
则其输出为:
 
vo=AB2{cos [(ω1+ω2)t+(φ1+φ2)]+cos[(ω1-ω2)t+(φ1-φ2)](1)
 
对于接收机来说,通常只关心信号的低频分量,因此可通过一级低通滤波器取其低频分量[2],则其输出可写为:
 
vo=AB2cos[(ω1-ω2)t+(φ1-φ2)](2)
 
显然乘法器输出信号幅值、相位和频率与两个输入信号均相关。
 
而对于接收机来说,只关心接收的回波信号参数变化对接收机输出的影响,而不希望过多引入本振信号的参数。同时由于乘法器属于非线性器件,因此会产生很多干扰和失真,包括干扰哨声、寄生通道干扰、交叉调制失真、互相调制失真等,而且当输入信号幅值增大时,由于幅度相乘的作用,输出信号很有可能会出现限幅,因而发生失真[3]。这些因素都会极大地影响接收机的性能,因此乘法器并不是实现接收机混频电路的最佳选择。开关混频可以有效克服模拟乘法器缺陷。
 
2开关混频原理
同样假设输入信号和本振信号分别为:
 
v1=Acos(ω1t+φ1),
 
v2=Acos(ω2t+φ2),
 
现在取与v2同频的方波信号v′2则有:
 
 
将其展开成傅里叶级数可得:
 
 
显然v′2是以ω2为基波的多次谐波的集合[4],因此同样可以采用v1与v′2混频,然后取其基波的方式获得v1与v2混频的结果。
 
于是信号v1和方波信号v′2的混频可以写成:
 
 
则经过低通滤波器,滤除和频以及差频高次谐波可得:
 
 
由式(6)可以看出,混频后的最终结果是幅值和相位都只和输入信号有关,频率为输入信号与本振信号差值的信号。显然以这样的方式混频可以最大程度保持信号的原始信息,而尽量减小本振信号的影响。
 
3开关混频器实现
基于以上的开关混频原理,v1与v′2混频可表示为:
 
@T3VI}N_7@(07]N1}R8`(AH.png
 
由式(7)可以看出,v1与v′2混频相当于在v′2的正电平期间输出v1,在v′2的负电平期间输出-v1,因此可以采用模拟开关来实现混频[5]。具体实现方法如图1所示。
 
 
 
输入信号v1分成两路,一路为v1,另一路为-v1,分别输入两个模拟开关,模拟开关的通断受信号v′2控制,正电平时上面的模拟开关导通,相应地输出v1,负电平时下面的模拟开关导通,相应地输出-v1,显然这样的结果与式(7)吻合。如此就实现了v1与方波信号v′2的乘法,完成了信号混频。显然这种方式输出信号幅度和相位只取决于输入信号v1,而与方波信号v′2无关。其波形如图2所示。
 
 
混频后的输出结果含有高次谐波,因此需要后续采用低通滤波处理才能得到v1与v2的差频信号。
 
4结论
由以上分析可知,开关混频同样也可以实现两信号乘法,并且输出信号的相位和幅度仅和输入信号相关,而与本振信号无关,因此更加有利于后续电路对输入信号的检测以及相关参数的识别处理。
 
对于多路输入的接收机系统来说,开关混频方式更加有利于消除由于本振信号的不一致而引入的参数畸变,提高接收机对有效目标信号的识别处理能力。
 
 
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
通过将谐波终止在封装内来构建更高效的RF功率放大器

高数据速率移动通信系统需要使用高能效的RF功率放大器(PA),以便帮助降低网络的运营成本。

毫米波设备的挑战与不同的测量方案

当前最有吸引力的毫米波应用主要在E频段与V频段。E频段对应于60GHz~90GHz的频率范围,在此频段上由于大气衰减的影响只能采取视线传输(LOS)方式。实际上,很多大气中的分子,例如氧气、水蒸气或氮气,可以在这个频段内的特定波长上吸收能量。

原来,晶振在电路中起到这个作用!
原来,晶振在电路中起到这个作用!

晶振全称又叫Crystalz振荡器,它就像人体的心脏,神圣又美丽,起着至关重要的一部分。

经典弱信号测试及误差分析
经典弱信号测试及误差分析

本次设计硬件部分主要由信号放大、交直流转换、AD转换、量程转换、用于数据采集和数据传输的单片机、接口芯片、串口以及PC机等部分构成。

为什么通讯机房设备经常烧毁?
为什么通讯机房设备经常烧毁?

计算机时代的发展,数据存储也不断进步,从早期的软盘到光盘,从光盘到U盘,从U盘到现在的云盘,使存储发生了质的变化,但你是否考虑过那些安装云盘的机房是否安全呢!

更多资讯
没有宝马就不会有今天的宁德时代?

自成立至今仅七年时间,宁德时代一跃成为全球动力电池出货量的冠军,这与中国新能源车市的“井喷”密不可分,此外,宁德时代比许多本土动力电池供应商更幸运的是,一早就“傍上”宝马。“可以说,没有宝马就不会有今天的宁德时代。”宁德时代宝马项目总监朱凌波曾如是说。

Littelfuse自恢复过热保护设备提高聚合物锂离子电池和方形电池的安全性并节省空间

Littelfuse公司,今日宣布推出MHP-TAC(金属混合PPTC - 热活化紧凑型)系列自恢复过热保护设备——电池迷你断路器产品线中的最新产品。

全系列工业交流浪涌保护解决方案可从变送器系统中获得

Full Range of Industrial AC Surge Protection Solutions Now Availablefrom Transtector Systems

设计/电路振荡/磁元件三方面对付开关电源的噪音

噪音来源于PCB设计/电路振荡/磁元件三方面:

介绍几种巧妙的廉价的电流检测电路

用招就要用妙招,今天楼主来教大家几个电流检测电路的巧妙技巧。要知道在电源等设备中通常需要做电流检测或反馈,电流检测通常用串联采样电阻在通过放大器放大电阻上的电压的方法,如果要提高检测精度这地方往往要用到比较昂贵的仪表放大器,以为普通运放失调电压比较大。

Moore8直播课堂
电路方案