单相电源滤波器设计过程和相关知识

2018-08-09 17:10:27 来源:elecfans
标签:

 

本文主要介绍了关于单相电源滤波器的设计及其设计过程相关知识,希望通过本文能让你对单相电源滤波器有更深的理解。

 

电源滤波器

电源滤波器就是对电源线中特定频率的频点或该频点以外的频率进行有效滤除的电器设备。电源滤波器的功能就是通过在电源线中接入电源滤波器,得到一个特定频率的电源信号,或消除一个特定频率后的电源信号。


利用电源滤波器的这个特性,可以将通过电源滤波器后的一个方波群或复合噪波,变成一个特定频率的正弦波。

 

 

电源滤波器常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数S来表示,此值越大,则滤波器的滤波效果越差。

 

脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量

 

电源滤波器的原理就是一种阻抗适配网络:电源滤波器输入、输出侧与电源和负载侧的阻抗适配越大,对电磁干扰的衰减就越有效。

 

单相电源滤波器设计

本文主要以单相有源电力滤波器为例,浅谈单相电源滤波器的设计过程。

 

基本原理及系统结构

有源电力滤波器是一种可以对动态变化的谐波无功进行补偿的装置,它能够对各次谐波进行主动跟踪和补偿。其通过采样负载电流和电压,通过指令电流运算电路计算出补偿电流的指令信号,反相后用该信号控制逆变器的导通,得出补偿电流,从而抵消负载中相应电流,实现了动态跟踪补偿,而且既可以补偿谐波又可以补偿无功[4]。图1所示为单相并联型有源电力滤波器的原理图。

 

从图中可以看出,有源电力滤波器与非线性负载都并联在单相电源上。接入电网的非线性负载产生负载电流,向电网注入谐波和无功电流,系统通过传感器将采集到的负载电流送到谐波电流检测运算电路,经计算得出的指令信号来控制补偿电流发生电路(由电流跟踪控制电路、驱动电路和逆变器主电路三个部分构成)工作,逆变器输出的电压与电网电压的压差作用在滤波电感上,产生补偿电流注入电网,从而补偿了谐波无功电流,使电网电流信号呈现标准的正弦波形。

 

图1 单相有源电力滤波器原理图

 

2 谐波检测与控制策略

谐波检测是有源电力滤波器的关键环节,其快速性与精确度直接影响补偿电流的输出结果。本文选择了基于鉴相原理的谐波检测方法。以电网电压信号为基准信号,通过锁相环产生出标准的正弦与余弦信号,把检测到的瞬时电流与标准的正余弦信号进行线性变化处理再通过低通滤波器后滤出其直流分量,从而得到谐波和无功电流[5]。该方法高效、简便,易于在实验中实现,如图2所示为带直流侧电压控制的谐波检测过程。

 

图2 谐波检测过程

 

将检测到的谐波电流进行系统闭环总体控制,本系统的外环是直流侧电压环控制,内环是逆变器输出的补偿电流控制。有源电力滤波器的直流侧电压一般是由功率管反并联的二极管电网电压整流来获得,通过控制电压环可以达到直流侧与电网有功能量的交换,保证有源电力滤波器在启动时直流侧充电到预期电压。在正常运行时控制电压环从电网得到有功功率,维持直流侧电压稳定[6~7]。

 

图中,Udc为直流侧实际电压,Uref为直流侧给定电压,两者的差值经PI调节器调节后叠加到谐波检测出来的有功电流的直流分量Ip上,然后再乘以标准正弦信号,就得到了瞬时有功电流。检测到的负载电流is(t)减去该有功电流就可得到谐波和无功电流之和ih(t)。

 

如图3所示为系统控制图,本文选择PI+三角波的调制方法。将ih(t)反相后得到的,其与逆变器输出的补偿电流ic(t)做差,该误差信号经PI调节后与三角波信号比较,产生相应的PWM信号控制逆变器导通。

 

图3 系统控制图

 

3 系统软硬件设计

单相并联型有源电力滤波器的硬件系统主要由APF主电路、DSP控制板、信号采样调理电路、MOSFET驱动电路等组成,本设计系统采用TMS320F28335作为主控芯片,搭建了系统平台如图4所示。

 

由于有源电力滤波器对实时性和高效性要求比较高,所以本文的主控芯片选择了TI公司的TMS320F28335。TMS320F28335是TI的2000系列中新推出的一款32位的具有浮点内核的DSP芯片,也是目前工业控制领域最先进的处理器之一。

 

其主频高达150MHz(6.67nS时钟周期),内核电压1.9V/1.8V,IO口电压为3.3V;具有IEEE-754单精度浮点运算单元(FTU),16×16和32×32介质访问控制(MAC)运算,哈佛总算结构,快速中断响应和处理;16位或32位外部接口,可处理超过2M×16位地址范围;片内存储器256K×16位Flash存储器,34K×16位单口随机存储器(SARAM),1K×16位一次性可编程(OTP)ROM[8]。

 

图4 系统硬件架构图

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
为什么叫“卡尔曼”,卡尔曼滤波器算法介绍

首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!

容易实现的三阶环路滤波器的设计方法就在这里

小数分频频率合成器在测试时必须外接一个环路滤波器电路与压控振荡器才能构成一个完整的锁相环电路。其外围电路中环路滤波器的设计好坏将直接影响到芯片的性能测试。以ADF4153小数分频频率合成器为例,研究了其外围环路滤波器的设计方法,给出了基于芯片测试的环路滤波器设计流程,并进行了验证测试。测试结果表明,该滤波器可满足小数分频频率合成器芯片测试

一文读懂滤波器的使用与设计
一文读懂滤波器的使用与设计

在电子系统里滤波器是很见的组成部分,可以通过R,L,C的搭配组成各种滤波电路。一阶RC滤波器的截止频率等于1/2*pi*RC.,R,C,L串联可以搭建二阶带通滤波器等等。

如何预防频谱分析仪的损坏呢?教你几招

频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。

音响电源滤波器在音响系统中很重要

我们日常使用音响听音乐,讨论了很多关于喇叭、箱体、音源等影响音质的话题。今天我们来谈谈音响电源滤波器,可能有些人还很陌生,它到底有什么作用?其实,音响电源滤波器在音响系统里面发挥着非常重要的角色。

更多资讯
12分钟充满电?三星这款手机用石墨烯电池厉害了
12分钟充满电?三星这款手机用石墨烯电池厉害了

目前智能手机创新上最大的短板就是电池,续航不能显著提升,同时锂电池也不是非常安全,或许你该问了,已经用了这么多年的锂电池什么时候跟大家说再见呢?

带LED的风扇是如何显示信息的?
带LED的风扇是如何显示信息的?

又到了通过专业英语阅读掌握专业技能的时间了。今天我们看一个有趣的小产品是如何做成的。

电池温度传感器再思考
电池温度传感器再思考

随着锂电池的能量密度的提升和安全裕度的降低,核心的问题是要知道锂电池单体本身的温度。

ABAA11-电池战略的内容
ABAA11-电池战略的内容

花费了挺大的劲,把AABA11的一些材料下载下来,有一些是比较重要的,我做了一些摘录,和各位读者探讨一下。这里的话题比较多,首先一个抓住的还是由VW定义的大模组和对应的电芯选择。

ABAA11-固态电池和高镍部分
ABAA11-固态电池和高镍部分

在这次论坛里面,有两部分还是值得我们关注的,一部分是现在主要的材料企业做的高镍正极,这表征短期2-3年内我们能走到哪里,一部分是未来的固态电池的研究情况。

Moore8直播课堂