PCB设计中控制ESD的基本方法有哪些?

2018-09-14 07:49:00 来源:ofweek
标签:

静电不能被消除,只能被控制。

控制ESD的基本方法:

堵;

从机构上做好静电的防护,用绝缘的材料把PCB板密封在外壳内,不论有多少静电都不能到释放到PCB上。

 

导;

有了ESD,迅速让静电导到PCB板的主GND上,可以消除一定能力的静电。

对于非金属外壳或有金属背板的产品我来分析一下ESD问题;

重点分析非金属外壳的内部电路及PCB的ESD的设计;

 

参考如下结构:(注意有的产品内部含有金属背板)

 

 

对于有穿过电路板PCB的干扰:

(电场耦合和磁场耦合都存在系统无接地!)

一方面我们要规划干扰在PCB上的路径(注意这是在电路板-PCB布局布线是需要提前规划的);另一方面要尽量控制干扰的幅度。

 

注意有些产品外壳是非金属结构;但系统内部为了产品的强度或者是为了应对EMC设计的需求会有金属背板的设计!我们还要注意以下ESD路径;

 

 

进行分析:干扰电流为何会穿越PCB?

一定是PCB电路板一边的接口及连接线,输入I/O接口及连接线引入了干扰,或者如上述产品的结构搭接&孔缝!干扰从内部电路,功能单元,系统走线流向大地!(系统参考接地板)如上面的两图示路径!

 

绝大多数情况下,PCB电路板多边有接口及连接线是常见情况;接口及连接线多,就会有测试整改难度的提高,无论系统有多复杂我们还是有对策的!

 

首先逐一插拔接口及连接线,看看拔掉哪个接口或连接线可以提高抗扰度。

 

如果可以找得到影响抗扰度的连接线或接口,我们可以直接跨接巧妙的运用电容,把干扰旁路掉!这也是一种措施;在电路设计时我是推荐应用的!

 

在对应导线上套磁环可以减小干扰电流,也是措施之一。(我常用这种方法来指导客户进行问题的判断和分析!)

 

如果插拔接口或连接线没有明确的发现,就要规划干扰路径也就避免或者减少流经敏感电路的干扰电流,例如避免干扰电流流经CPU/MCU&控制电路及晶振(振荡器布局布线!)电路等;如上图所示!

 

对于CPU/MCU,尽量使引脚处于高阻状态,阻止干扰电流流入!

 

CPU/MCU的输出引脚,要串电阻并旁路电容,切不可引脚直通外部电路!

 

即便没有干扰信号,引脚直通也是不合理的,易引起CPU/MCU的故障损坏!

 

ESD引起的复位分析!

 

注意,看门狗复位也会导致软件重启机复位!

 

硬件复位主要是两个源头:

 

A.电源电压过低,CPU内部电路产生了一个复位信号;

B.复位引脚上有一个复位脉冲信号注入。

 

1.CPU/MCU电源线布线合理,退耦电容适当布置,依靠ESD耦合过来的这点能量拉动电源到复位电平的可能性比较小,不作优先考虑。

 

2.复位引脚有干扰的情况比较多出现,优先考虑。

 

注意点:

a)复位电路引线是否过长;

b)复位电路是否形成大环路;

c)芯片复位引脚是否接一个小电容到就近接地;

d)复位信号有没有供其他芯片使用;

e)有没有用专用复位芯片设计等等;

 

布局得当就不太容易产生硬复位,相对与重启机还是比较容易处理的。

 

如果是a、b问题,则在辐射抗扰度测试时也会产生复位。

 

基本措施:

靠近CPU复位引脚切断复位信号线串1~10KΩ电阻,复位引脚对地就近并1~10nF电容。相对来说,直接硬复位干扰还是比较容易处理的。

 

软件方面:

需要确定的系统MCU/CPU-I/0口或控制信号受干扰引起误动作的情况。

 

由于ESD是瞬态干扰,持续时间非常短,重复读取控制信号状态基本上就可以排除干扰。注意增加的滤波电路也有可能起反作用的;例外情况:磁珠与电容组合会展宽干扰电平,需要增加信号确认时间,对于需要快速响应的程序就要好好考虑一下!

 

A.确定的某个模拟量信号受干扰引起误动作的情况;先用硬件的方法进判断。

由于ESD是瞬态干扰,数字滤波程序运用排除最大最小值的办法就可以排除干扰。

同样,滤波电路会展宽干扰信号,造成连续采到几个干扰信号,不能全部排除。

 

B.干扰引起硬复位的情况。主要有两种情况会让CPU/MCU复位,一个是复位引脚受干扰,另一个是电压下降使上电判断电路产生复位信号。

这些相对比较容易处理,增加电阻电容滤波、合理布线基本上可以解决问题。

 

C.比较难处理的是死机或者死机引起的看门狗复位。

可能是任何引脚引入干扰的干扰,需要逐一排除,由于很少是单一引脚引入干扰,处理起来比较麻烦,如果结构上或者外围电路上没有有效措施,电路板PCB布局布线重新做的可能性较大。PCB的关键问题点:过大的环路面积造成问题!!

 

D.软件敏感性,引脚阻抗Flash芯片写操作;ESD脉冲短,脉冲串也不长,未必与软件敏感状态重叠,所以测试验证时要充分考虑这些情况。硬件设计可以提高干扰强度,一定要注意软件敏感环节。

 

电路板PCB干扰机理分析

1.金属构件是否会产生交大dv/dt,并耦合到临近的敏感电路;

2.检验放电通路是否由于寄生电感因di/dt产生感性耦合到敏感电路;

3.ESD通常是同时存在dv/dt及di/dt,一般dv/dt更容易产生耦合;

4.共模电流预规划措施不佳,让较多共模干扰电流流经敏感电路;

5.敏感电路对地有较低共模阻抗,使较大共模干扰电流经由敏感电路流向地。

流经敏感电路的共模干扰电流不会消失,它同样还要流回地,任何从敏感电路引出的导线都有可能是流经敏感电路的干扰电流流回地的途径;

6.共模干扰电流在敏感电路产生差模才会引起干扰,敏感电路有较大的阻抗不平衡,使流经的共模干扰电流产生了差模电压;

7.受干扰器件引脚阻抗过高;

8.器件受扰动作阈值过低;

9.振荡器电路工作异常;软件没有能够分离处理好瞬态干扰信号(或者是软件算法有问题);

 

对于系统为非金属外壳的电子产品或者设备;静电ESD对产品的裸露的金属部分进行接触放电同时对结构的缝隙进行非常高电压的(>16KV)的空间放电时;系统内部就会是电场耦合和磁场耦合都存在复杂环境;走线环路面积是关键!!

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
通过PCB设计实现阻抗控制

没有阻抗控制的话,将引发相当大的信号反射和信号失真,导致设计失败。常见的信号,如PCI总线、PCI-E总线、USB、以太网、DDR内存、LVDS信号等,均需要进行阻抗控制。阻抗控制最终需要通过PCB设计实现,对PCB板工艺也提出更高要求,经过与PCB厂的沟通,并结合EDA软件的使用,按照信号完整性要求去控制走线的阻抗。

2018年PCB行业大事件回顾

2018年以来,PCB行业延续了2017年的良好发展态势,各企业纷纷投建扩产。下半年以来,据不完全统计,PCB签约/开工项目总投资额就已超过223亿元人民币。

开关电源PCB印制板铜皮走线的注意事项

引言开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代产品。因为开关三极管总是工作在 “开” 和“关” 的状态,所以叫开关电源。

PCB选择性焊接的工艺特点和流程

在PCB电子工业焊接工艺中,有越来越多的厂家开始把目光投向选择焊接,选择焊接可以在同一时间内完成所有的焊点,使生产成本降到最低,同时又克服了回流焊对温度敏感元件造成影响的问题,选择焊接还能够与将来的无铅焊兼容,这些优点都使得选择焊接的应用范围越来越广。

6大PCB设计技巧让PCB设计的更好

一般的PCB的铜箔厚度为1盎司,约1.4mil的话,大致1mil线宽允许的最大电流为1A。过孔比较复杂,除了与过孔焊盘大小有关外,还与加工过程中电镀后孔壁沉铜厚度有关。

更多资讯
柔宇发布“手写神器”柔记樱雪白特别版,支持7国语言手写识别

9月23日,柔宇科技在2018北京国际设计周期间首次对外发布柔宇科技的“柔性+”办公教育类升级新品 -- 柔记 RoWrite S 智能手写本(樱雪白特别版)。

Molex推出新型高性能节能串灯

Molex发布全新Woodhead LED串灯,这是一款为工业和电气应用设计的高性能节能产品。Woodhead LED串灯不仅降低了运营成本,还降低了对基础设施和后期维护的要求。集成的灯具引擎使得这一体化解决方案可以搭建整个系统而无需采购额外的产品,比如单独采购的保护罩或更换的灯珠。

欧博通信电力布线案例

电力行业一般来说包括电厂发电、电网输配电、终端用电三大块。对于不同性质的功能区,综合布线有不同的需求。

宽带网络开启通往智慧城市之路

从安全性、便利性到创收能力,智慧城市应用将改变城市的运转方式以及我们生活和工作的方式。而这一切都始于通信——智慧城市中的居民、车辆、系统和应用都必须通过有线和无线网络进行连接。

贸易摩擦影响LED上下游需求,然中国生产重镇地位不变

根据集邦咨询LED研究中心(LEDinside)最新「LED产业需求与供给数据库报告」显示,2018年全球LED市场整体产值为187.96亿美元,相较于2017年仅增加4%,成长幅度低于今年初预测的11%,最主要原因仍在于产业供需失衡,供给过剩导致LED的价格下滑,以及贸易摩擦影响终端需求。

Moore8直播课堂
电路方案