物联网(IoT)中低功率广域(LPWA)技术介绍

2017-06-08 15:22:00 来源:万物云联网
分享到:
标签:

 

许多标准化工作由包括电气和电子工程师协会(IEEE),欧洲电信标准协会(ETSI)和第三代合作伙伴计划(3GPP)以及工业联盟(如WEIGHTLESS-SIG), LORa?联盟和DASH7联盟等在内的不同的标准化机构进行的。图1提出标准的各种开发组织,文章最后的表1总结了不同标准的技术规格。一些LPWA技术的定性比较可以在相关文献中找到。并且大多数这些标准化努力还涉及本公众号前面讨论的几个专有的LPWA连接提供商。这些SDO和SIG的目标是相当多样化的。从长远来看,希望采用这些标准可能会减少LPWA市场的分散度,并使多种竞争技术能够共存。

 


图1、各种LPWA的标准化组织


A. IEEE
IEEE正在扩展其802.15.4 (参见:http://standards.ieee.org/findstds/standard/802.15.4-2011.html)和802.11 (参见:http://standards.ieee.org/about/get/802/802.11.html)标准的覆盖范围并降低功耗,并提供相应的物理层和MAC层的新协议规范。IEEE提出了两个LPWA标准作为IEEE 802.15.4低速无线个人区域网络(LR-WPAN)基准标准的修订版,我们将本文中介绍。此外,本文还简要描述了为实现更长覆盖范围对用于无线局域网(WLAN)的IEEE 802.11标准的修改努力。

 


图2、IEEE的无线标准化组织架构


1)IEEE 802.15.4k:低能量,关键基础设施监控网络:IEEE 802.15.4k任务组(TG4k)提出了一种低能量关键基础设施监控(LECIM:low-energy critical infrastructure monitoring )应用在ISM频段(SUB- GHZ和2.4 GHz)频段的标准。这是对早期标准在满足LPWA应用所需的覆盖范围以及节点密度不足的事实的回应。 IEEE 802.15.4k修正版通过采用DSSS和FSK两个新的PHY层调制方式来弥补这一差距。可以使用范围从100kHz到1MHz的多个离散的信道带宽。 MAC层的规范也被修改以适应新的物理层。该标准支持常规的无优先级通道访问(PCA)的CSMA / CA,,以及具有PCA的CSMA和ALOHA。使用PCA,设备和基站可以优先考虑其访问介质的流量,从而提供服务质量(quality of service)的概念。像大多数LPWA标准一样,终端设备以星形拓扑结构连接到基站,并能够交换异步和调度消息。

 


图3、IEEE的802.15.4协议架构


基于IEEE 802.15.4k的基于LPWA的空气质量监测部署例子,该例子中部署了一个星形拓扑网络,其中1个接入点和5个节点部署在距离大学校园中心3公里的半径范围内。接入点工作在433 MHz频段的频谱上。使用15 dBm的发射功率,收发信机可以根据数据速率要求支持不同的灵敏度,例如对于分别对应于300 bps,1.2 kbps和50 kbps的数据速率,可以实现-129 dBm,-123 dBm和-110 dBm的接收灵敏度。

INGENU,RPMA LPWA技术提供商(参见:http://theinternetofthings.report/Resources/Whitepapers/4cbc5e5e-6ef8-4455-b8cd-f6e3888624cb_RPMA%20Technology.pdf),是本标准的支持者。 INGENU LPWA技术的PHY和MAC层符合本标准的要求。

2)IEEE 802.15.4g:低数据速率,无线,智能电表电力网络( Low-Data-Rate, Wireless, Smart Metering Utility Networks):IEEE 802.15 WPAN任务组4g(TG4g)提出了第一套PHY修改,以扩展IEEE 802.15.4基准标准的短距离组合。 2012年4月发布的标准涉及诸如智能电表计量网络之类的过程控制应用,这些智能计量网络固有地由部署在城市或国家的大量固定终端设备组成。该标准定义了三个PHY层,即FSK,正交频分多址(OFDMA)和偏移第四相移键控(QPSK),其支持跨不同区域的40kbps到1Mbps的多个数据速率。除了在美国采用单一的许可频段外,PHY主要在ISM(SUB-GHZ和2.4 GHz)频带中工作,因此与同一频段内的其他干扰技术共存。 PHY被设计为提供大小达1500字节的帧,以避免互联网协议(IP)分组数据包出现分段。

支持新PHY的MAC层的变化由IEEE 802.15.4e而不是由IEEE 802.15.4g标准本身定义。

3)IEEE 802.11:无线局域网:WLAN技术将在IoT中发挥重要作用。 IEEE 802.11任务组AH(TGah:IEEE 802.11 Task Group AH)和长距离低功率(LRLP: Long Range Low Power)中的IEEE 802.11主题兴趣组(TIG:Topic Interest Group))对WLAN进行扩展范围和降低功耗的努力。

TGah (参见:http://www.ieee802.org/11/Reports/tgah_update.htm)提出了用于在SUB-GHZ ISM频带中运行长距离Wi-Fi操作的IEEE 802.11ah PHY层和MAC层规范。与IEEE 802.11ac标准相比,该标准引入了几个新功能,在户外环境中实现1公里的覆盖范围,数据速率超过100 kbps。 PHY层采用比IEEE 802.11ac(早先的WiFi标准)慢10倍的OFDM调制方式,以扩展通信范围。在MAC层,减少了与帧,帧头以及信标相关联的开销,以延长电池供电的工作寿命(参见文献“IEEE 802.11ah: the WiFi approach for M2M communications”,下载地址:https://www.researchgate.net/publication/260268761_IEEE_80211ah_the_WiFi_approach_for_M2M_communications)。 MAC协议针对数千(8191)个连接终端设备的应用进行了裁减,从而减少了它们之间的冲突。终端设备支持在非活动期间节省能量但仍保持与接入点的连接/同步的机制。随着所有这些新的省电模式和覆盖范围的增强,IEEE 802.11ah确实提供比其他WLAN标准,ZigBee和蓝牙更大的覆盖范围和更低的能源消耗,但不如本文中讨论的其他LPWA技术那么多。由于这个原因,越来越多的最近发表的研究和IETF草案文献(参见:https://tools.ietf.org/html/draft-minaburo-lpwan-gap-analysis-02),(参见:https://datatracker.ietf.org/wg/lpwan/charter/)中并没有采用IEEE 802.11ah作为LPWA技术。实际上,IEEE 802.11ah为了适应那些需要相对较高带宽的应用,因此牺牲了比其他LPWA技术更高的功耗。

在文献“Feasibility study of IΕΕΕ 802.11ah radio technology for IoT and M2M use cases”(下载地址:http://www.ie.u-ryukyu.ac.jp/~wada/system15/fesibility_study_80211ah.pdf)中研究了使用IEEE 802.11ah进行满足IoT / M2M应用场景的可行性。作者表明,当使用900MHz频带时,对于下行链路情况,当AP使用更高的发射功率(20-30dBm)时,可以直接实现1km的范围和高于100kbps的数据速率。然而,对于上行链路情况,实现这些目标时是相当有挑战性的,因为客户端操作低功率(0 dBm),并且要进行信号周期占空比循环以支持多年的电池运行寿命。在这种情况下,作者强调使用编码方案,更高的发射功率和更高的天线增益可能有助于改善这种情况,达到高达400米的覆盖范围。然而,这可能是以客户端的电池寿命降低为代价的,这可能是不希望的。他们还建议,如果可靠性要求降低,覆盖范围可以进一步提高,例如。他们能够实现1公里范围的链路而可靠性低于60%。

新的主题兴趣小组(TIG)于2016年在802.11的职权范围内成立,该小组旨在探讨长距离低功耗(LRLP)新标准的可行性(参见:http://www.ieee802.org/11/Reports/lrlp_update.htm)。在这项工作的早期阶段,TIG已经在"IEEE P802.11 Wireless LANs"(参见:http://www.ieee802.org/11/index.html)中定义了该技术的一些应用场景和功能要求,但无法明确证明IEEE LAN / MAN标准委员会(LMSC)对此活动的需求。因此,LRLP的工作已经有点启动过早。
B. ETSI

ETSI致力于标准化双向低数据速率LPWA标准。被称为低吞吐率网络(LTN:Low Throughput Network )的标准化标准工作于2014年以三组规格的形式发布。这些规范定义了i)使用情况(参见:http://www.etsi.org/deliver/etsi_gs/LTN/001_099/001/01.01.01_60/gs_LTN001v010101p.pdf) ii)功能体系架构(参见:http://www.etsi.org/deliver/etsi_gs/LTN/001_099/002/01.01.01_60/gs_LTN002v010101p.pdf),以及iii)协议和接口(参见:http://www.etsi.org/deliver/etsi_gs/LTN/001_099/003/01.01.01_60/gs_LTN003v010101p.pdf)。其主要目标之一是通过利用M2M / IoT通信的短有效载荷大小和低数据速率来减少电磁辐射。

除了对空中接口的建议外,LTN也为终端设备,基站,网络服务器以及操作和业务管理系统之间的协作定义了各种接口和协议。

 


图4、ETSI的LTN例子


受新兴LPWA网络使用超窄带宽(例如SIGFOX,TELENSA)和正交序列扩频(OSSS)(例如LORa)调制技术这一事实的推动,LTN标准并不限于单一类别。只要终端设备,基站和网络服务器实现LTN规范描述的接口,它就可以为LPWA运营商提供灵活性,以便在SUB-GHZ ISM频段内设计和部署自己的专有UNB或OSSS调制方案 。这些规范建议中在上行链路使用BPSK调制方式,在下行链路中使用GFSK调制方式,来实现UNB。或者,可以使用任何OSSS调制方案来支持双向通信。数据加密以及用户认证过程被定义为LTN规范的一部分。

许多LPWA技术提供商,如SIGFOX,TELENSA和Semtech等,积极参与ETSI的标准化技术工作。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
比特币“受困”区块链怎么破局?物联网/人工智能/教育行业都有它身影
比特币“受困”区块链怎么破局?物联网/人工智能/教育行业都有它身影

当全民开始讨论比特币的时候,中国人民银行等七部门联合下发公告,防范代币发行融资风险。随后在9月14日晚间,国内首家比特币交易所“比特币中国”发布公告称,比特币中国数字资产交易平台即日起停止新用户注册,并将于9月30日停止所有交易业务。

LoRa与NB-IOT为啥一直在PK?看完这12点就明白

近期全球低功耗广域网(LPWAN)市场的激增可归因于多个因素。机器学习和 M2M 通信标准的快速发展发挥了重要作用,加之全球对物联网服务的需求不断增长、低价的 LPWAN 工具和节能机会的增多。

一文读懂物联网NB-IoT与LoRa的区别

物联网的无线通信技术很多,主要分为两类:一类是Zigbee、WiFi、蓝牙、Z-wave等短距离通信技术;另一类是LPWAN(low-powerWide-AreaNetwork,低功耗广域网),即广域网通信技术。

与ARM强化合作,英特尔晶圆代工腾飞的节奏?
与ARM强化合作,英特尔晶圆代工腾飞的节奏?

摩尔定律已经持续半个多世纪,从90nm到65nm、45nm再到32nm……。不过,在实际的工艺制造角度,摩尔定律经受到一次又一次将终止的考验和质疑,如2007年intel 开发45nm的HKMG工艺,以及2011年intel 开发22nm的finFET 结构等都是转折点。

物联网商用的难点在哪里?

影响物联网安全策略的因素不外乎系统的复杂性、网络、安全,以及人为因素…

更多资讯
中国政策松绑,巨头们看到了飞机WiFi的市场

日前,民航局飞行标准司副司长朱涛表示,将允许由航空公司对便携式电子设备的影响进行评估,并制定相应的管理和使用政策。

亚马逊AWS/微软云/腾讯云/阿里云/华为云,巨头的云端之战
亚马逊AWS/微软云/腾讯云/阿里云/华为云,巨头的云端之战

业内人士表示,中国应从标准、生态、应用三方面入手,抢占全球基础设施主导权。

WePhone创始人苏享茂自杀,“网络电话”背后是怎样的商业模式?

两周前,WePhone创始人兼开发者苏享茂自杀的消息曾刷爆网络。目前,打开程序员苏享茂一手创办的网络电话APP“WePhone”,仍能看到公司法人被毒妻害死,WePhone即将停止运营的弹窗。

华为副总裁楚庆:物联网的当务之急是商业化

基于成熟的4G技术,NB-IoT能够把原来支离破碎的物联网有机地统一在一起,从而实现真正的“万物互联”。

NB-IoT基站升级,光迅科技、华工正源、海信宽带抢夺大单

对很多供应商而言,有线与无线建设并不冲突。最典型的例子,近4年中国大力投资LTE建设,基站之间的互联全部采用光通信模式,因此对光缆、光模块产生了一波又一波的需求,同时LTE反向推动承载网络升级,进一步拉升了光通信产品的需求。

微话题

年初定的哪些“小目标”没有阵亡?

2017年能耗过半,年初定的哪些“小目标”没有阵亡? ……