好色之图 | CMOS成像如何模拟人眼色彩感受?ISP算法有大招

2017-01-09 16:27:34 来源:EEFOCUS
分享到:
标签:

我们要找出CCM中的系数,也要建立一个和imatest类似的评价体系。先回顾一下ISP框架,在CCM之后还有Gamma,Hue和saturation会对图像色彩和亮度产生影响,而评测的图像是ISP的最终输出。所以要找出CCM系数,首先要建立一个ISP色彩和亮度模型,如下图。我们认为一般情况下用户不需要去调整亮度,对比度,饱和度以及色调等参数,这些模块的默认参数不对图像色彩和亮度产生任何影响。没有影响的模块我都改成灰色,剩下三个有颜色的模块是需要参与CCM系数寻找的。

 

Figure 3.2.3 计算CCM所需要的色彩亮度模型


建好了模型,还需要注意一点:由于sensor的感光动态范围和24色卡标准色有差异,并且图像平均亮度也可能有差异。我们对标准色做亮度调整(乘法)和动态范围调整(调对比度),使之尽量符合当前这张图像的平均亮度和动态范围,见figure3.2.4。换句话说,就是让标准24色下方的6个黑白色块,在变换后的亮度尽可能和当前输出的图像接近。

 

Figure 3.2.4 标准色转换前后比较
 

有了模型和目标之后,接下来就是选择一种机制来找出最优的CCM系数。这里每人都可以发挥个人想象力,尽量找出最优的结果,最“笨”但有效的方法就是遍历,在一定精度条件下遍历所有的可能性,找出误差最小的那组系数。在搜索CCM系数的时候,有不少误区,例如只看色彩误差数据ΔC,当搜索范围设置不合理,图像饱和度偏低的时候,计算出来的ΔC会很小,实际效果很难看。

 

Figure 3.2.5 ΔC很好,饱和度太低


在不同色温下,CCM的系数也有较大的差异,所以一般在ISP中存有多组CCM系数。在实际使用过程中,需要通过AWB计算出当前色温,然后选择合适的CCM系数,或者几组CCM系数的线性组合。在low light Noise较大的情况下,有时还会减小CCM系数绝对值以降低Noise。AWB解决了sensor 的R,G,B敏感度差异和色温的影响,CCM则是纠正R,G,B感光之间的相互干扰,使图像更接近于人眼。两者结合就算把色彩纠正完成了。

 

 

作者简介
侯莅聪
侯莅聪

东南大学研究生毕业,在瑞晟微电子工作12年。是数字IC设计资深经理和数字图像处理专家,拥有多篇专利。参与研发的USB camera产品,获得市场占有率第一的位置。

微话题

问题来了︱靠谱千元机

(有奖互动)哪款千元机才是最酷的……