PCB中产生电磁干扰的原因及消除干扰技巧

2017-12-06 17:33:01 来源:电子发烧友
标签:

PCB中,会产生EMI的原因很多,例如:射频电流、共模准位、接地回路、阻抗不匹配、磁通量……等。为了掌握EMI,我们需要逐步理解这些原因和它们的影响。虽然,我们可以直接从电磁理论中,学到造成EMI现象的数学根据,但是,这是一条很辛苦、很漫长的道路。对一般工程师而言,简单而清楚的描述更是重要。本文将探讨,在PCB上「电的来源」、Maxwell方程式的应用、磁通量最小化的概念。

 
电的来源
与磁的来源相反,电的来源是以时变的电双极(electric dipole)来建立模型。这表示有两个分开的、极性相反的、时变的点电荷(point charges)互为相邻。双极的两端包含着电荷的变化。此电荷的变化,是因为电流在双极的全部长度内,不断地流动而造成的。利用振荡器输出讯号去驱动一个没有终端的(unterminated)天线,此种电路是可以用来代表电的来源。但是,此电路无法套用低频的电路原理来做解释。不考虑此电路中的讯号之有限传播速度(这是依据非磁性材料的介电常数而定),反正射频电流会在此电路产生。这是因为传播速度是有限的,不是无限的。此假设是:导线在所有点上,都包含相同的电压,并且此电路在任何一点上,瞬间都是均衡的。这种电的来源所产生的电磁场,是四个变量的函数:
 
1. 回路中的电流振幅:电磁场和在双极中流动的电流量成正比。
2. 双极的极性和测量装置的关系:与磁来源一样,双极的极性必须和测量装置的天线之极性相同。
3. 双极的大小:电磁场和电流组件的长度成正比,不过,其走线长度必须只有波长的部份大。双极越大,在天线端所测量到的频率就越低。对特定的大小而言,此天线会在特定的频率下共振。
4. 距离:电场和磁场彼此相关。两者的强度和距离成正比。在远场(far field),其行为和回路源(磁的来源)类似,会出现一个电磁平面波。当靠近「点源(point source)」时,电场和磁场与距离的相依性增加。
 
近场(near field)(磁和电的成份)和远场的关系,如附图一所示。所有的波都是磁场和电场成份的组合。这种组合称作「PoynTIng向量」。实际上,是没有一个单独的电波或磁波存在的。我们之所以能够测量到平面波,是因为对一个小天线而言,在距离来源端数个波长的地方,其波前(wavefront)看起来像平面一样。
 
图一:波阻抗和距离的关系
 
这种外貌是由天线所观测到的物理「轮廓」;这就好像从河边向河中打水漂一样,我们所看到的水波是一波波的涟漪。场传播是从场的点源,以光速的速度向外辐射出去;其中,。电场成份的测量单位是V/m,磁场成份的测量单位是A/m。电场(E)和磁场(H)的比率是自由空间(free space)的阻抗。这里必须强调的是,在平面波中,波阻抗Z0,或称作自由空间的特性阻抗,是和距离无关,也和点源的特性无关。对一个在自由空间中的平面波而言:
 
 
波前所承载的能量单位是watts/m2。
 
就Maxwell方程式的大多数应用而言,噪声耦合方法可以代表等效组件的模型。例如:在两个导体之间的一个时变电场,可以代表一个电容。在相同的两导体之间,一个时变磁场可以代表互感(mutual inductance)。附图二表示这两种噪声耦合机制。
 
图二:噪声耦合机制
 
平面波的形状
若要使此噪声耦合方法正确,电路的实际大小必须比讯号的波长小。若此模型不是真正正确时,仍然可以使用集总组件(lumped component)来说明EMC,原因如下:
 
1. Maxwell方程式不能直接应用在大多数的真实情况中,这是因为复杂的边界条件所造成的。如果我们对集总模型的近似正确度没有信心,则此模型是不正确的。不过,大多数的集总组件(或称作离散组件)是可靠的。
2. 数值模型不会显示噪声是如何根据系统参数产生的。纵使有一个模型可能是答案,但与系统相关的参数是不会被预知、辨识,和显现的。在所有可用的模型当中,集总组件所建立的模型算是最好的。
 
为什么这个理论和对Maxwell方程式的讨论,对PCB设计和布线(layout)很重要?答案很简单。我们必须先知道电磁场是如何产生的,之后我们就能够降低在PCB中,由射频产生的电磁场。这与降低电路中的射频电流有关。此射频电流直接和讯号分布网络、旁路和耦合相关。射频电流最后会形成频率的谐波和其它数字讯号。讯号分布网络必须尽量的小,如此才能将射频回传电流的回路区域尽量缩小。旁路和耦合与最大电流相关,而且必须透过电源分散网络来产生大电流;而电源分散网络,在定义上,它的射频回传电流之回路区域是很大的。
 
图三:噪声耦合方法
 
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
【巅峰让利】捷多邦PCB工厂板费大减 工程费大降

2018年以来,捷多邦三大PCB工厂锐意进取,成果有目共睹。坪山厂根基牢固,惠州厂继续高歌猛进,沙井厂也在行业崭露头角。

针对DDR2-800和DDR3的PCB信号完整性设计
针对DDR2-800和DDR3的PCB信号完整性设计

本文章主要涉及到对DDR2和DDR3在设计印制线路板(PCB)时,考虑信号完整性和电源完整性的设计事项,这些是具有相当大的挑战性的。文章重点是讨论在尽可能少的PCB层数,特别是4层板的情况下的相关技术,其中一些设计方法在以前已经成熟的使用过。

东山精密拟19亿收购FLEX下属PCB业务

6月12日,东山精密披露,公司拟以现金方式向纳斯达克上市公司FLEX收购其下属的PCB(印制电路板)制造业务相关主体,合称为Multek,对此,东山精密表示,此次交易的达成将有助于公司扩大在海外市场的业务覆盖,进一步完善国际化布局。

Harwin扩展高牢固性表面贴装3点PCB插槽系列应用范围

高可靠性连接器供应商Harwin宣布进一步扩展其Sycamore Contact产品,该系列产品最初只能涵盖1和1.5毫米直径的接线引脚,但现在已经可覆盖0.80至1.90毫米的引脚尺寸。

明导举办PCB系统论坛 推DRC工具缩短开发时间

长久以来,PCB的开发一直受到设计时间、成本控制的限制。近年来,更由于各种复杂设计的装置纷纷推出,为各类的PCB设计验证带来挑战。

更多资讯
多层PCB板的选择、叠加原则和设计
多层PCB板的选择、叠加原则和设计

在设计多层PCB电路板之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4层,6层,还是更多层数的电路板。确定层数之后,再确定内电层的放置位置以及如何在这些层上分布不同的信号。这就是多层PCB层叠结构的选择问题。

PCB族群5月市场略回温 软板上游整体走扬

印刷电路板族群5月市场略回温,其中硬板厂健鼎以产能及新产品助攻淡季营收创高,而中量、利基型的PCB厂营收仍强劲,博智、高技营收5月再创新高。

PCB厂商捷多邦将出席2018CEE北京电子展

2018年度CEE电子展将于6月28日至6月30日在北京亦创国际会展中心举行,全球PCB打样服务商捷多邦透露,届时将出席参加此次展会,向业内外人士展示其集“PCB设计、生产、元器件采购、贴片、组装”于一体的一站式服务新模式 。

低功耗蓝牙之四大PCB板载天线设计方式

一直以来,无论是智能手机,还是笔记本电脑,亦或是平板电脑,蓝牙都是智能设备的标配。随着移动互联网的发展,现在涌现出大量的智能可穿戴设备,而支撑这些应用的发展不仅需要移动软件支持,同样也需要无线传感技术的支持,蓝牙依然是无线连接的首选通信方式。

苹果新机即将量产,PCB厂商欲迎来增长大潮?

随着苹果新机即将进入量产,加上非苹新机陆续上市开始针对上游功能部件展开拉货,台湾PCB供应商5月营运增温,臻鼎-KY、耀华、亚电5月合并营收均较上月成长,并创下历年同期新高,PCB业者表示,客户新品陆续拉货,产能利用率逐渐提高,看好下半年旺季表现。

电路方案