通过PCB设计实现阻抗控制

2018-09-26 14:33:10 来源:硬件十万个为什么
标签:

 

没有阻抗控制的话,将引发相当大的信号反射和信号失真,导致设计失败。常见的信号,如PCI总线、PCI-E总线、USB、以太网、DDR内存、LVDS信号等,均需要进行阻抗控制。阻抗控制最终需要通过PCB设计实现,对PCB板工艺也提出更高要求,经过与PCB厂的沟通,并结合EDA软件的使用,按照信号完整性要求去控制走线的阻抗。

 

不同的走线方式都是可以通过计算得到对应的阻抗值。

 

微带线(microstrip line)

•它由一根带状导线与地平面构成,中间是电介质。如果电介质的介电常数、线的宽度、及其与地平面的距离是可控的,则它的特性阻抗也是可控的,其精确度将在±5%之内。

 

 


带状线(stripline)

带状线就是一条置于两层导电平面之间的电介质中间的铜带。如果线的厚度和宽度,介质的介电常数,以及两层接地平面的距离都是可控的,则线的特性阻抗也是可控的,且精度在10%之内。

 

 

多层板的结构:

为了很好地对PCB进行阻抗控制,首先要了解PCB的结构:

通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。

 

通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。

 

多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。

 

当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构:

 

  

 

PCB的参数:

不同的印制板厂,PCB的参数会有细微的差异,通过与电路板厂技术支持的沟通,得到该厂的一些参数数据:

  

表层铜箔:

可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um。

  

芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜,可选用的规格可与厂家联系确定。

  

半固化片:

规格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0.095mm ),实际压制完成后的厚度通常会比原始值小10-15um左右。同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。如果半固化片的厚度不够,可以把芯板两面的铜箔蚀刻掉,再在两面用半固化片粘连,这样可以实现较厚的浸润层。

  

阻焊层:

铜箔上面的阻焊层厚度C2≈8-10um,表面无铜箔区域的阻焊层厚度C1根据表面铜厚的不同而不同,当表面铜厚为45um时C1≈13-15um,当表面铜厚为70um时C1≈17-18um。

  

导线横截面:

我们会以为导线的横截面是一个矩形,但实际上却是一个梯形。以TOP层为例,当铜箔厚度为1OZ时,梯形的上底边比下底边短1MIL。比如线宽5MIL,那么其上底边约4MIL,下底边5MIL。上下底边的差异和铜厚有关,下表是不同情况下梯形上下底的关系。

 

  

 

介电常数:半固化片的介电常数与厚度有关,下表为不同型号的半固化片厚度和介电常数参数:

 

  

 

板材的介电常数与其所用的树脂材料有关,FR4板材其介电常数为4.2—4.7,并且随着频率的增加会减小。

  

介质损耗因数:电介质材料在交变电场作用下,由于发热而消耗的能量称之谓介质损耗,通常以介质损耗因数tanδ表示。S1141A的典型值为0.015。

  

能确保加工的最小线宽和线距:4mil/4mil。

 

阻抗计算的工具简介:

当我们了解了多层板的结构并掌握了所需要的参数后,就可以通过EDA软件来计算阻抗。可以使用Allegro来计算,但这里向大家推荐另一个工具Polar SI9000,这是一个很好的计算特征阻抗的工具,现在很多印制板厂都在用这个软件。

  

无论是差分线还是单端线,当计算内层信号的特征阻抗时,你会发现Polar SI9000的计算结果与Allegro仅存在着微小的差距,这跟一些细节上的处理有关,比如说导线横截面的形状。但如果是计算表层信号的特征阻抗,我建议你选择Coated模型,而不是Surface模型,因为这类模型考虑了阻焊层的存在,所以结果会更准确。下图是用Polar SI9000计算在考虑阻焊层的情况下表层差分线阻抗的部分截图:

 

  

 

由于阻焊层的厚度不易控制,所以也可以根据板厂的建议,使用一个近似的办法:在Surface模型计算的结果上减去一个特定的值,建议差分阻抗减去8欧姆,单端阻抗减去2欧姆。

 

差分对走线的PCB要求

(1)确定走线模式、参数及阻抗计算。差分对走线分外层微带线差分模式和内层带状线差分模式两种,通过合理设置参数,阻抗可利用相关阻抗计算软件(如POLAR-SI9000)计算也可利用阻抗计算公式计算。

 

(2)走平行等距线。确定走线线宽及间距,在走线时要严格按照计算出的线宽和间距,两线间距要一直保持不变,也就是要保持平行。平行的方式有两种: 一种为两条线走在同一线层(side-by-side),另一种为两条线走在上下相两层(over-under)。一般尽量避免使用后者即层间差分信号, 因为在PCB板的实际加工过程中,由于层叠之间的层压对准精度大大低于同层蚀刻精度,以及层压过程中的介质流失,不能保证差分线的间距等于层间介质厚度, 会造成层间差分对的差分阻抗变化。困此建议尽量使用同层内的差分。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
IPC报告显示10月份北美PCB销售量增速缓慢

IPC — 国际电子工业联接协会® 上周发布了《2018年10月份北美地区PCB行业调研统计报告》。报告显示10月份北美PCB订单量和出货量同比继续增长, 订单出货比维持在1.04。

PCB布局布线的10条规则

遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.

五大技巧搞定从PCB原理图传递到版图设计

通过网表文件将原理图传递到版图环境的过程中还会传递器件信息、网表、版图信息和初始的走线宽度设置。

WAGO,一件接线端子产品中体现的匠人精神
WAGO,一件接线端子产品中体现的匠人精神

在电子产品和终端设备的整个生命周期中,任何一个组成器件的质量都将影响整个系统的性能、可靠性、稳定性和寿命,接线端子就是其中之一,而在接线端子领域,WAGO是个不可被忽视的名字。

移相控制的多路输出降压变换器提升EMI性能的PCB布局优化

电源设计工程师通常在汽车系统中使用一些DC/DC降压变换器来为多个电源轨提供支持。然而,在选择这些类型的降压转换器时需要考虑几个因素。

更多资讯
方正科技助力中国高端PCB产业发展

2018年12月5日,全球最具影响力及代表性之一的线路及电子组装展览会 -- 2018国际线路板及电子组装华南展览会在深圳会展中心开幕。方正科技集团股份有限公司(以下简称“方正科技”)旗下方正PCB参展并展示印制电路板业务和智能制造领域的优质产品。

集成运放中相位补偿的具体应用

相位控制:在供电电压全周或半周内,使电流开始流通的瞬时起变化的过程。在此过程中电流通过零值左右就停止。通过控制触发脉冲的相位来控制直流输出电压大小,简称相控方式。例如:可控整流电路中,调节触发信号触发角a,可控制输出电压Ud的大小。对应的还有斩波控制、SPWM控制。

PCB设计时应该注意的148个检查项目

本文总结了PCB设计时应该注意的148个检查项目,希望对您的学习有所帮助。

EDA画图函数的数据类型分析

Step1:导入数据并了解数据轮廓 查看各个特征的基本数据类型并且计算哪些特征缺失值比较多。 将特征的数据类型分为数值型和离散型两大类。

与时钟(clock)相关的PCB设计考虑

今天我们讲一下与时钟(clock)相关的PCB的设计考虑,主要分两部分:原理图设计 - 针对时钟电路应该放置哪些器件?以及PCB布局和走线 - 如何摆放与时钟相关的元器件并正确连线达到理想的性能。

Moore8直播课堂