PCB布局布线

2018-10-09 13:09:53 来源:电路设计技能
标签:

 

一旦完成了原理图的设计,通过ERC检查无误(没有Error、最好也没有Warning)、生成Netlist,就可以进入到下一步 - PCB Layout了,这个过程应该细分为元器件的Placement(布局)和信号线的Route(布线)两个环节,在实际的设计中Placement(布局)更重要,需要花费更多的时间,基于一系列的需求和规则对每个元器件在电路板上的位置进行认真的摆放,尤其是在大型的项目中,一定要待元器件的布局被相关的人确定以后,再开始信号线的连接,也就是布线的过程。布局和布线的过程基于信号完整性、电源完整性等方面的考虑不在本教程的探讨范围,在这里我们只看看KiCad这个工具如何实现布局和布线整个流程的。
 
我们将PCB Layout的过程也总结为按照顺序执行的10步:
 
按照项目的需求确定PCB板的物理大小、关键器件的位置、板子的层数并定义各层的功能
 
加载原理图生成的Netlist(网表),根据一系列的规则进行元器件的布局,可以通过3D视图查看板子的布局结构是否合理
 
根据PCB加工厂商的制造规范设定PCB的布线规则 - 线宽、线间距、过孔大小、丝印字体及大小等等
 
关键信号线走线 - 电源 、时钟、差分信号、敏感的模拟信号….
 
其它信号线走线
 
铺地/电源
 
DRC检查
 
对照原理图上的连线逐线高亮检查
 
调整丝印
 
生成给PCB加工厂需要的Gerber文件
 
接下来我们来看看KiCad中的布局布线工具Pcbnew是如何执行这些过程的。
 
1. Pcbnew的使用
1. 执行程序 - 从KiCad项目管理处单击Pcb layout editor(PCB布局编辑器)图标启动Pcbnew窗口。 
 
2. 设置页面信息 - 先输入一些原理图信息:单击顶部工具栏上的Page setting(页面设置)图标。设置Page size(纸张大小)为(A4, 8.5×11等)和title(标题)为Tutorial1。
 
 
3. 设置布局布线规则 - 根据PCB制造商提供的要求来设间距、最小线宽等。一般来讲可以将间距和最小线宽度都设置为0.25mm。 单击Setup(设置)→ Design Rules(设计规则)菜单来设置各个参数,这里的单位是mm。
 
 
4. 导入网表文件 - 单击顶部工具栏上的Read netlist(读入网表)图标 。 如果是从Eeschema创建的,则可以在Netlist文件字段中选择网表文件tutorial1.net进行读取。 
 
5. 查看并移动基于网表导入的器件 - 在页面中应该能够看到原理图中定义了封装的所有器件,这些器件都通过称为ratsnest的一组细线连接 - 你可以通过Show/hide board ratsnest(显示/隐藏电路板网络)按钮来查看所有器件之间的连接关系,如果你发现这些细线的连接跟电路原理图中原本设计的有出入,就要回去查看一下是哪一个地方出了问题。
 
6. 调整器件的位置 - 可以用鼠标选中这些器件并进行移动,也可以将鼠标悬停在你要移动的器件上并按[m]来移动它们,然后单击要放置它们的位置将其放好,也可以通过单击选择器件然后拖动它。按[r]可以旋转器件。
 
 
7. 定义PCB板的外沿 - 从顶部工具栏的下拉菜单中选择Edge.Cuts图层。单击右侧工具栏上的Add graphic lines(添加图形线)图标。然后用走线圈定PCB的边缘,要记住在绿色边缘和PCB边缘之间留一个小间隙。
 
 
 
8. 布线 - 一般来讲我们都会在电路板上通过大面积铺设地平面的方式将所有GND进行连接,因此在布线的时候可以先不用考虑GND这个网络上的连线。电路板的外表面有两层 - F.Cu(顶层,我们也称为Top Layer)和B.Cu(底层,我们也称为Bottom Layer),两层板一般选择在B.Cu层铺设大面积的地平面,因为F.Cu层主要用于放置元器件。如果设计中需要用到4层板,可以转到设置→图层设置将铜图层改为4. 你可以在图层表中设置需要的图层并对它们的用途做设定。
 
布线的时候我们先从F.Cu开始,在顶部工具栏的下拉菜单中选择F.Cu,如图:
 
 
单击右侧工具栏上的Route tracks(布线)图标。 单击J1的第1个引脚连线到R2的焊盘,双击鼠标结束连线。 此走线的宽度将默认为0.250mm,你也可以从顶部工具栏的下拉菜单中更改走线的宽度。 默认只有一个走线宽度。
 
 
如果要添加更多走线宽度,可以通过设置→设计规则→全局设计规则选项卡,在此窗口的右下角添加任何其它你需要的宽度,这样在后面布线的时候你可以根据需要随时从下拉菜单中选择走线的宽度。 请参见下面的示例(单位为英寸)。
 
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
隔离电源的隔离耐压和爬电距离介绍

随着嵌入式行业的快速发展,在各种行业应用中电源要求也越来越高,为保证系统的稳定性,隔离电源应运而生。但隔离电源中关键指标——隔离电压指的是什么?与爬电距离有什么关系?本文将从隔离电源的原理为你揭晓。

从隔离电源的原理揭晓隔离电压与爬电距离有什么关系?

随着嵌入式行业的快速发展,在各种行业应用中电源要求也越来越高,为保证系统的稳定性,隔离电源应运而生。但隔离电源中关键指标——隔离电压指的是什么?与爬电距离有什么关系?本文将从隔离电源的原理为你揭晓。

电源完整性设计:电容不仅仅是电容

正确使用电容进行电源退耦,必须了解实际电容的频率特性。理想电容器在实际中是不存在的,这就是为什么经常听到“电容不仅仅是电容”的原因。

电源完整性设计:解决电源噪声问题的主要方法

采用电容退耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。

电源完整性设计:为什么要重视电源噪声问题

芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。随着芯片的集成度越来越高,内部晶体管数量越来越大。芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。

更多资讯
各类阻水、防水型数字电缆应用简介

本文主要介绍了目前综合布线市场上使用比较多的各类阻水、防水型数字电缆,并简单阐述了该类产品的工艺设计、电气性能特点和生产过程中关键制造技术的控制。

PCB设计工程师不得不知的法则

尽管目前半导体集成度越来越高,许多应用也都有随时可用的片上系统,同时许多功能强大且开箱即用的开发板也越来越可轻松获取,但许多使用案例中电子产品的应用仍然需要使用定制PCB。在一次性开发当中,即使一个普通的PCB都能发挥非常重要的作用。

印刷电路板上被动组件的隐藏行为和特性

传统上,EMC一直被视为「黑色魔术(black magic)」。其实,EMC是可以藉由数学公式来理解的。不过,纵使有数学分析方法可以利用,但那些数学方程式对实际的EMC电路设计而言,仍然太过复杂了。幸运的是,在大多数的实务工作中,工程师并不需要完全理解那些复杂的数学公式和存在于EMC规范中的学理依据

知道这些测试术语,你才敢真的说懂PCB

提交验收的产品尚未经受任何条件处理,在正常大气条件下机械试验时阿状态

软硬兼修讲解STM32从原理图PCB到移植RTOS

2010年,我在华为时,暂时脱产去参与招聘工作;为了为本部门招聘更多的人,争夺HC号(招聘入职的名额),所以非常卖力的希望每个来面试的,符合硬杠杠的面试者都能通过层层面试。

Moore8直播课堂