FreeRTOS操作系统最全面使用指南

2018-01-09 16:55:45 来源:21IG
标签:
作为一个轻量级的操作系统,FreeRTOS提供的功能包括:任务管理、时间管理、信号量、消息队列、内存管理、记录功能等,可基本满足较小系统的需要。FreeRTOS内核支持优先级调度算法,每个任务可根据重要程度的不同被赋予一定的优先级,CPU总是让处于就绪态的、优先级最高的任务先运行。FreeRT0S内核同时支持轮换调度算法,系统允许不同的任务使用相同的优先级,在没有更高优先级任务就绪的情况下,同一优先级的任务共享CPU的使用时间。
  
FreeRTOS的内核可根据用户需要设置为可剥夺型内核或不可剥夺型内核。当FreeRTOS被设置为可剥夺型内核时,处于就绪态的高优先级任务能剥夺低优先级任务的CPU使用权,这样可保证系统满足实时性的要求;当FreeRTOS被设置为不可剥夺型内核时,处于就绪态的高优先级任务只有等当前运行任务主动释放CPU的使用权后才能获得运行,这样可提高CPU的运行效率。
  
2 FreeRTOS操作系统的原理与实现
2. 1任务调度机制的实现
任务调度机制是嵌入式实时操作系统的一个重要概念,也是其核心技术。对于可剥夺型内核,优先级高的任务一旦就绪就能剥夺优先级较低任务的CPU使用权,提高了系统的实时响应能力。不同于μC/OS-II,FreeRTOS对系统任务的数量没有限制,既支持优先级调度算法也支持轮换调度算法,因此FreeRTOS采用双向链表而不是采用查任务就绪表的方法来进行任务调度。系统定义的链表和链表节点数据结构如下所示:
  
 
FreeRTOS定义就绪任务链表数组为xList pxReady—TasksLists[portMAX_PRIORITIES]。其中portMAX_PRIORITIES为系统定义的最大优先级。若想使优先级为n的任务进入就绪态,需要把此任务对应的TCB中的结点xGenericListltem插入到链表pxReadyTasksLiStS[n]中,还要把xGenericListItem中的pvContainer指向pxReadyTasksLists[n]方可实现。
  
当进行任务调度时,调度算法首先实现优先级调度。系统按照优先级从高到低的顺序从就绪任务链表数组中寻找usNumberOfItems第一个不为0的优先级,此优先级即为当前最高就绪优先级,据此实现优先级调度。若此优先级下只有一个就绪任务,则此就绪任务进入运行态;若此优先级下有多个就绪任务,则需采用轮换调度算法实现多任务轮流执行。
  
若在优先级n下执行轮换调度算法,系统先通过执行(pxReadyTasksLists[n])→pxIndex=( pxReadyTasks-Lists[n ]) → pxlndex→pxNext语句得到当前结点所指向的下一个结点,再通过此结点的pvOwner指针得到对应的任务控制块,最后使此任务控制块对应的任务进入运行态。由此可见,在FreeRTOS中,相同优先级任务之间的切换时间为一个时钟节拍周期。
  
以图1为例,设系统的最大任务数为pottMAX_PRIORITIES,在某一时刻进行任务调度时,得到pxReadyTasksLists[ i].usNumberOfItems=O(i=2...portMAX_PRIORITIES)以及pxReadyTasksLists。usNumberOfItems=3。由此内核可知当前最高就绪优先级为l,且此优先级下已有三个任务已进入就绪态.由于最高就绪优先级下有多个就绪任务,系统需执行轮换调度算法实现任务切换;通过指针pxlndex可知任务l为当前任务,而任务l的pxNext结点指向任务2,因此系统把pxIndex指向任务2并执行任务2来实现任务调度。当下一个时钟节拍到来时,若最高就绪优先级仍为1,由图可见,系统会把pxIndex指向任务3并执行任务3。
  
 
为了加快任务调度的速度,FrecRTOS通过变量ucTopReadyPriotity跟踪当前就绪的最高优先级。当把一个任务加入就绪链表时,如果此任务的优先级高于ucTopReadyPriority,则把这个任务的优先级赋予ucTopReadyPriority。这样当进行优先级调度时,调度算法不是从portMAX_PRIORIT
  
IES而是从ucTopReady-Priority开始搜索。这就加快了搜索的速度,同时缩短了内核关断时间。
  
2.2 任务管理的实现
实现多个任务的有效管理是操作系统的主要功能。FreeRTOS下可实现创建任务、删除任务、挂起任务、恢复任务、设定任务优先级、获得任务相关信息等功能。下面主要讨论FreeRTOS下任务创建和任务删除的实现。当调用sTaskCreate()函数创建一个新的任务时,FreeRTOS首先为新任务分配所需的内存。若内存分配成功,则初始化任务控制块的任务名称、堆栈深度和任务优先级,然后根据堆栈的增长方向初始化任务控制块的堆栈。接着,FreeRTOS把当前创建的任务加入到就绪任务链表。若当前此任务的优先级为最高,则把此优先级赋值给变量ucTopReadyPriorlty(其作用见2.1节)。若任务调度程序已经运行且当前创建的任务优先级为最高,则进行任务切换。
  
不同于μC/OS—II,FreeRTOS下任务删除分两步进行。当用户调用vTaskDelete()函数后,执行任务删除的第一步:FreeRTOS先把要删除的任务从就绪任务链表和事件等待链表中删除,然后把此任务添加到任务删除链表,若删除的任务是当前运行任务,系统就执行任务调度函数,至此完成任务删除的第一步。当系统空闲任务即prvldleTask()函数运行时,若发现任务删除链表中有等待删除的任务,则进行任务删除的第二步,即释放该任务占用的内存空间,并把该任务从任务删除链表中删除,这样才彻底删除了这个任务。值得注意的是,在FreeRTOS中,当系统被配置为不可剥夺内核时,空闲任务还有实现各个任务切换的功能。
  
通过比较μC/OS-II和FreeRTOS的具体代码发现,采用两步删除的策略有利于减少内核关断时间,减少任务删除函数的执行时间,尤其是当删除多个任务的时候。
  
2.3 时间管理的实现
FreeRTOS提供的典型时间管理函数是vTaskDelay(),调用此函数可以实现将任务延时一段特定时间的功能。在FreeRT0S中,若一个任务要延时xTicksToDelay个时钟节拍,系统内核会把当前系统已运行的时钟节拍总数(定义为xTickCount,32位长度)加上xTicksToDelay得到任务下次唤醒时的时钟节拍数xTimeToWake。然后,内核把此任务的任务控制块从就绪链表中删除,把xTimeToWake作为结点值赋予任务的xItemValue,再根据xTimeToWake的值把任务控制块按照顺序插入不同的链表。若xTimeToWake > xTickCount,即计算中没有出现溢出,内核把任务控制块插入到pxDelayedTaskList链表;若xTimeToWak e< xTickCount,即在计算过程中出现溢出,内核把任务控制块插入到pxOverflowDelayed-Taskust链表。
  
每发生一个时钟节拍,内核就会把当前的xTick-Count加1。若xTickCount的结果为0,即发生溢出,内核会把pxOverflowDelayedTaskList作为当前链表;否则,内核把pxDelaycdTaskList作为当前链表。内核依次比较xTickCotlrtt和链表各个结点的xTimcToWake。若xTick-Count等于或大于xTimeToWake,说明延时时间已到,应该把任务从等待链表中删除,加入就绪链表。
  
由此可见,不同于μC/OS—II,FreeRTOS采用“加”的方式实现时间管理。其优点是时间节拍函数的执行时间与任务数量基本无关,而μC/OS—II的OSTimcTick()的执行时间正比于应用程序中建立的任务数。因此当任务较多时,FreeRTOS采用的时间管理方式能有效加快时钟节拍中断程序的执行速度。
  
2.4 内存分配策略
每当任务、队列和信号量创建的时候,FreeRTOS要求分配一定的RAM。虽然采用malloc()和free()函数可以实现申请和释放内存的功能,但这两个函数存在以下缺点:并不是在所有的嵌入式系统中都可用,要占用不定的程序空间,可重人性欠缺以及执行时间具有不可确定性。为此,除了可采用malloc()和free()函数外,FreeRTOS还提供了另外两种内存分配的策略,用户可以根据实际需要选择不同的内存分配策略。
  
第1种方法是,按照需求内存的大小简单地把一大块内存分割为若干小块,每个小块的大小对应于所需求内存的大小。这样做的好处是比较简单,执行时间可严格确定,适用于任务和队列全部创建完毕后再进行内核调度的系统;这样做的缺点是,由于内存不能有效释放,系统运行时应用程序并不能实现删除任务或队列。
  
第2种方法是,采用链表分配内存,可实现动态的创建、删除任务或队列。系统根据空闲内存块的大小按从小到大的顺序组织空闲内存链表。当应用程序申请一块内存时,系统根据申请内存的大小按顺序搜索空闲内存链表,找到满足申请内存要求的最小空闲内存块。为了提高内存的使用效率,在空闲内存块比申请内存大的情况下,系统会把此空闲内存块一分为二。一块用于满足申请内存的要求,一块作为新的空闲内存块插入到链表中。
  
下面以图2为例介绍方法2的实现。假定用于动态分配的RAM共有8KB,系统首先初始化空闲内存块链表,把8KB RAM全部作为一个空闲内存块。当应用程序分别申请1KB和2KB内存后,空闲内存块的大小变为5KB3。2KB的内存使用完毕后,系统需要把2KB插入到现有的空闲内存块链表。由于2 KB<5KB,所以把这2 KB插入5KB的内存块之前。若应用程序又需要申请3 KB的内存,而在空闲内存块链表中能满足申请内存要求的最小空闲内存块为5KB,因此把5KB内存拆分为2部分,3KB部分用于满足申请内存的需要,2KB部分作为新的空闲内存块插入链表。随后1KB的内存使用完毕需要释放,系统会按顺序把1KB内存插入到空闲内存链表中。
 
 
方法2的优点是,能根据任务需要高效率地使用内存,尤其是当不同的任务需要不同大小的内存的时候。方法二的缺点是,不能把应用程序释放的内存和原有的空闲内存混合为一体,因此,若应用程序频繁申请与释放“随机”大小的内存,就可能造成大量的内存碎片。这就要求应用程序申请与释放内存的大小为“有限个”固定的值(如图2中申请与释放内存的大小固定为l KB、2 KB或3 KB)。方法2的另一个缺点是,程序执行时间具有一定的不确定性。
  
μC/OS—II提供的内存管理机制是把连续的大块内存按分区来管理,每个分区中包含整数个大小相同的内存块。由于每个分区的大小相同,即使频繁地申请和释放内存也不会产生内存碎片问题,但其缺点是内存的利用率相对不高。当申请和释放的内存大小均为一个固定值时(如均为2 KB),FreeRTOS的方法2内存分配策略就可以实现类似μC/OS—Ⅱ的内存管理效果。
  
2.5 FreeRTOS的移植
FreeRTOS操作系统可以被方便地移植到不同处理器上工作,现已提供了ARM、MSP430、AVR、PIC、C8051F等多款处理器的移植。FrceRTOS在不同处理器上的移植类似于μC/0S一II,故本文不再详述FreeRTOS的移植。此外,TCP/IP协议栈μIP已被移植到FreeRTOS上,具体代码可见FreeRTOS网站。
 
2.6 FreeRTOS的不足
相对于常见的μC/OS—II操作系统,FreeRTOS操作系统既有优点也存在不足。其不足之处,一方面体现在系统的服务功能上,如FreeRTOS只提供了消息队列和信号量的实现,无法以后进先出的顺序向消息队列发送消息;另一方面,FreeRTOS只是一个操作系统内核,需外扩第三方的GUI(图形用户界面)、TCP/IP协议栈、FS(文件系统)等才能实现一个较复杂的系统,不像μC/OS-II可以和μC/GUI、μC/FS、μC/TCP-IP等无缝结合。
  
3 结 论
作为一个源码公开的操作系统,学习FreeRTOS可以更好地掌握嵌入式实时操作系统的实现原理;作为一个免费的操作系统,采用FreeRTOS可在基本满足较小系统需要的情况下降低系统成本、简化开发难度。在实践中,采用FreeRTOS操作系统和MSP430单片机构成的温度控制系统稳定可靠,实现了较好的控制效果。相信随着时间的发展,FreeRTOS会不断完善其功能,以更好地满足人们对嵌入式操作系统实时性、可靠性、易用性的要求。
 
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
UltraSoC嵌入式分析技术与Imperas虚拟平台联手助力多核开发及调试

UltraSoC和Imperas今日宣布:双方将达成一项广泛的合作,为多核系统级芯片(SoC)开发人员提供结合了嵌入式分析技术和虚拟平台技术的强大组合。

恩智浦将嵌入式AI环境延伸至边缘处理应用

恩智浦半导体(纳斯达克代码:NXPI)今天宣布推出易于使用的泛化机器学习开发环境,用于构建具有高端功能的创新应用。

JTAG和支持JTAG的CPU

通常所说的JTAG大致分两类,一类用于测试芯片的电气特性,检测芯片是否有问题;一类用于Debug;一般支持JTAG的CPU内都包含了这两个模块。

郭台铭: 中国芯片和操作系统的路要慢慢走

鸿海董事长郭台铭表示,中国可以做出自己的芯片和操作系统。他认为,今年富士康进行园区改造,深圳龙华产业园区预计5年改造完成。

计算机模块让创新没那么难
计算机模块让创新没那么难

2018年,市场聚光灯聚焦在了以下几个领域:智能制造、物联网、人工智能、新能源汽车等。这些热门领域的快速发展为电子行业带来极大的发展机遇,对应用厂商提出了全新的设计需求,也让对功能开发起决定性作用的单板计算机面临着全新的机遇和挑战。

更多资讯
莫大康:迎接存储器业的挑战

较为乐观的估计,能用5年左右的时间,达到全球市场(2018年存储器业产值预测可达1,500亿美元)占比的3% - 5%,也即DRAM与NAND的累加产值能达到近50亿美元,表明中国存储器业的突围取得了初步的成功。

宜鼎iCAP云端管理平台实现终端远程智能管理,降低人力成本

宜鼎芯存Innodisk于今年Computex现场展出iCAP云端储存管理平台,以软件、硬件及固件跨界整合的优势,强势承接全球持续升温的智能工控管理需求。

旺宏电子:NOR Flash与NAND Flash内存都满载啦

内存供货商旺宏电子(Macronix),今日举行股东会,董事长吴敏求表示,NOR Flash与NAND Flash内存的需求持续满载,工业与车用的比例将进一步提升。

一文看懂STM32F4总线架构

在STM32F4中,有5个最重要的时钟源,为HSI、HSE、LSI、PLL。其中PLL实际是分为两个时钟源,分别为主PLL和专用PLL。在这五个中HSI、HSE以及PLL是高速时钟,LSI和LSE是低速时钟。

2018年第1季全球服务器销售概况

Gartner 6月11日公布,2018年第1季全球服务器销售额年增33.4%至166.93亿美元、出货量年增17.3%。

Moore8直播课堂
电路方案