FPGA和DDS在信号源中的应用

2015-06-02 08:34:31 来源:互联网
分享到:
标签:

 

1引言

DDS同DSP(数字信号处理)一样,是一项关键的数字化技术。DDS是直接数字式频率合成器(DirectDigitalSynthesizer)的英文缩写。与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。在各行各业的测试应用中,信号源扮演着极为重要的作用。但信号源具有许多不同的类型,不同类型的信号源在功能和特性上各不相同,分别适用于许多不同的应用。目前,最常见的信号源类型包括任意波形发生器,函数发生器,RF信号源,以及基本的模拟输出模块。信号源中采用DDS技术在当前的测试测量行业已经逐渐称为一种主流的做法。但DDS专用器件价格较贵,输出波形单一,使用受到一定限制,特别不适合于输出波形多样化的应用场合。随着高速可编程逻辑器件FPGA的发展,电子工程师可根据实际需求,在单一FPGA上开发出性能优良的具有任意波形的DDS系统,极大限度地简化设计过程并提高效率。本文在讨论DDS的基础上,介绍利用FPGA设计的基于DDS的信号发生器。

2 DDS技术工作原理

一块DDS芯片中主要包括频率控制寄存器、高速相位累加器和正弦计算器三个部分(如Q2220)。频率控制寄存器可以串行或并行的方式装载并寄存用户输入的频率控制码;而相位累加器根据频率控制码在每个时钟周期内进行相位累加,得到一个相位值;正弦计算器则对该相位值计算数字化正弦波幅度(芯片一般通过查表得到)。DDS芯片输出的一般是数字化的正弦波,因此还需经过高速D/A转换器和低通滤波器才能得到一个可用的模拟频率信号。DDS信号发生器,主要由相位累加器、相位寄存器、波形存储器、D/A转换器和模拟低通滤波器组成如图1所示。fR为参考时钟,K为输入频率控制字,其值与输出频率相对应,因此,控制输入控制字K,就能有效控制输出频率值。通常情况下,K值由控制器写入。



图1 DDS信号发生器组成原理图


由图1可知,在参考时钟fR的控制下,频率控制字K与相位寄存器的输出反馈在相位累加器中完成加运算,并把计算结果寄存于相位寄存器,作为下一次加运算的一个输入值。相位累加器输出高位数据作为波形存储器的相位抽样地址值,查找波形存储器中相对应单元的电压幅值,得到波形二进制编码,实现相位到电压幅值的转变。波形二进制编码再通过D/A转换器,把数字信号转换成相应的模拟信号。低通滤波器可进一步滤除模拟信号中的高频成分,平滑模拟信号。在整个过程中,当相位累加器产生一次溢出时,DDS系统就完成一个周期输出任务。频率控制字K与输出波形频率的函数表达关系式为:

f0=(K/2N)fR(1)

式中,K为频率控制字;fR为参考时钟,N为累加器的位宽值。

当K=l时,可得DDS的最小分辨率为:

fmin=fR/2(2)

为了得到较小分辨率,在实际工程设计中,N一般取得较大值,该系统是N取32位设计的。

3关键器件选型

本设计所用到的关键器件主要是可编程逻辑器件(FPGA)和D/A转换器。考虑设计成本等因素,FPGA采用Altera公司的低成本Cyclone系列EPlC6Q240C8.该器件采用逻辑阵列模块(LAB)和查找表(LUT)结构,内核采用1.5 V电压供电,是低功耗元件。此外,Cyclone系列EPlC60240C8内部资源丰富,其内部内嵌5 980个逻辑单元(LE),20个4 KB双口存储单元(M 4 KB RAM block)和92 160 bit普通高速RAM等资源,因此,能较好满足该系统设计要求。而D/A转换器则采用National Semiconductor公司的DAC0832.

4 DDS的FPGA实现

4.1相位累加器与相位寄存器的设计

VerilogHDL是一种硬件描述语言(HDL:HardwareDiscriptionLanguage),是一种以文本形式来描述数字系统硬件的结构和行为的语言,用它可以表示逻辑电路图、逻辑表达式,还可以表示数字逻辑系统所完成的逻辑功能。VerilogHDL和VHDL是目前世界上最流行的两种硬件描述语言,都是在20世纪80年代中期开发出来的。前者由GatewayDesignAutomation公司(该公司于1989年被Cadence公司收购)开发。两种HDL均为IEEE标准。

相位累加器与相位寄存器主要完成累加,实现输出波形频率可调功能。利用Quartus II可编程逻辑器件系统开发工具进行设计。首先,打开Quartus II软件,新建一个工程管理文件,然后在此工程管理文件中新建一个Verilog HDL源程序文件,并用硬件描述语言Verilog HDL编写程序实现其功能。在设计过程中,可在一个模块中描述。一个参考的Verilog HDL程序如下:


4.2基于1/4波形的存储器设计

为了提高系统的分辨率和降低FPGA资源的利用率,采用基于1/4波形的存储器设计技术。利用正弦波对称性特点,只要存储[O~π/2]幅值,通过地址和幅值数据变换,即可得到整个周期内的正弦波,其设计原理如图2所示。
 



图2 1/4波形的存储器件设计原理框图


用相位累加器输出高2位,作为波形区间标志位。当最高位与次高位都为"0"时,表示输出正弦波正处在[0~π/2]区间内,这时,地址与输出数据都不需要变换;当最高位为"0",次高位为"l"时,输出正弦波正处在[π/2~π]区间内,这时,地址变换器对地址进行求补操作,而输出数据不变;当最高位为"l",次高位为"0"时,输出正弦波正处在[π~3π/2]区间内,这时,地址不变,而输出变换器对输出数据进行求补操作;当最高位与次高位都为"l"时,输出正弦波正处在[3π/2~2π]区间内,这时,地址和输出数据都进行求补操作。

5 D/A转换电路

数据转换器输出的数据是数字形式的电压值,为实现数字电压值与模拟电压值之间的转换,系统还专门设计D/A转换电路,其D/A转换电路原理图如图3所示。



图3 D/A转换电路

 

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
让FPGA替代GPU的6大顾虑,你确定不看看吗?

最近FPGA又频频被各AI领域的巨头看好,比如微软、百度、科大讯飞都对FPGA应用前景有所期待。那么如果让你选择FPGA作为AI计算系统的主力军,你会有什么样的顾虑?

史上最大SOC/FPGA,英特尔Stratix 10 SX系列芯片有啥不同

英特尔(Intel)日前宣布Stratix 10 SX系列芯片将开始出货。

高云半导体涉足国产FPGA新领域—车载芯片

广东高云半导体科技股份有限公司(以下简称“高云半导体”)宣布将向客户提供支持汽车级温度范围的FPGA器件。

紫光同创资本增加,推进FPGA 研发

紫光同创资本增加,推进FPGA 研发。“紫光同创”为公司全资子公司“茂业创芯”的控股子公司,为保证紫光同创的持续研发投入,加快产品的市场化进程,促进其业务健康发展,公司决定对紫光同创进行增资。增资者为紫光新才及紫光同创原股东“聚仁投资”,紫光同创原控股股东茂业创芯不参与本次增资,增资方式为现金。

FPGA欲在云端发力,国产厂商的出路在哪?

多方资料显示,FPGA将在云端数据中心业务发挥突出的作用。据某数据调研报告预计,未来云端芯片的空间2020年有望达105亿美元,其中FPGA将贡献20亿美元。

更多资讯
莱迪思推出HDMI 2.1增强音频回传通道(eARC)解决方案,简化音频互连并提升性能

莱迪思半导体公司(NASDAQ: LSCC),客制化智能互连解决方案市场的领先供应商,今日宣布推出SiI9437和SiI9438,是首款HDMI® 2.1增强音频回传通道(eARC )音频接收器和发射器。

被称为AI时代的红人,FPGA你懂么
被称为AI时代的红人,FPGA你懂么

FPGA(Field Programmable Gate Array)于1985年由xilinx创始人之一Ross Freeman发明,虽然有其他公司宣称自己最先发明可编程逻辑器件PLD,但是真正意义上的第一颗FPGA芯片XC2064为xilinx所发明。

为何图像和FPGA更配?揭秘背后的技术要素
为何图像和FPGA更配?揭秘背后的技术要素

No PP,No WAY”这是个眼见为实的世界,这是个视觉构成的信息洪流的世界。大脑处理视觉内容的速度比文字内容快6万倍,而随着智能手机的普及,图片、视频的产生和分享已经是人们在社交平台上的基本交流方式。

华为基于Xilinx的云服务器于2017 超算大会首秀北美市场

All Programmable技术和器件的全球领先企业赛灵思公司与华为技术有限公司今天在美国科罗拉多丹佛举行的2017 年超级计算大会上联合宣布,华为FPGA 加速云服务器平台首次登陆北美市场。该平台采用赛灵思高性能Virtex UltraScale+ FPGA,在当今市场独树一帜。

谁才是机器学习时代最合适的编程语言?
谁才是机器学习时代最合适的编程语言?

开发者到底应该学习哪种编程语言才能获得机器学习或数据科学这类工作呢?这是一个非常重要的问题。我们在许多论坛上都有讨论过。

微话题

工作 or 考研?

又到一年招聘季,考研or工作让你实现了怎样的逆袭?……
Moore8直播课堂