被称为AI时代的红人,FPGA你懂么

2017-11-23 17:27:54 来源:物联网智库
标签:
PLD   芯片   FPGA

 

FPGA简介
FPGA(Field Programmable Gate Array)于1985年由xilinx创始人之一Ross Freeman发明,虽然有其他公司宣称自己最先发明可编程逻辑器件PLD,但是真正意义上的第一颗FPGA芯片XC2064为xilinx所发明,这个时间差不多比摩尔老先生提出著名的摩尔定律晚20年左右,但是FPGA一经发明,后续的发展速度之快,超出大多数人的想象,近些年的FPGA,始终引领先进的工艺。
 
FPGA发明后,在这个行业里面曾经出现过不少玩家,比如xilinx、altera、lattice、actel、cypress,atmel等,经过十几年的厮杀,玩家逐渐减少,这些公司或者出售,或者退出,如cypress,atmel完全退出,actel出售给microsemi,altera被intel收购,但这两个厂家还在这个行业。现在国际上的主流厂家实际只剩xilinx,altera(intel),lattice和microsemi四家。而前两者是绝对的霸主,占据市场总份额的近90%,处在第一阵营。后两者份额在百分之十左右,处在第二阵营,但和第一阵营差距非常大。与国际上巨头的兼并和退出相反,近些年国内陆续诞生了一些FPGA设计公司,且有蒸蒸日上的趋势,但在市场份额及技术方面和国际巨头差距非常大,还远未达到挑战领先巨头的实力,后面会对国内厂家做些分析。
 
下面再来简要介绍FPGA设计,这里的FPGA设计不是研发FPGA芯片,而是用FPGA做产品设计。业界普遍认为FPGA设计门槛很高,相对软件设计,差别在哪呢?现在FPGA的主流设计还是采用verilog设计(早期有使用原理图方式,这个方式更接近硬件搭积木,但大规模的设计无法完成)。用matlab,C语言做算法设计,然后通过工具直接转化为verilog的方式,喊了十几年,到现在还未成为主流,说明工具在转化verilog方面其效果还不如有经验的FPGA人员写的代码。Verilog语言本身非常简单,但FPGA设计的难点并不在语言,而是对FPGA器件内部资源和硬件的熟悉,你写的语言能和你使用的目标器件高效的配合起来,使它的效果、利用率以及程序的可读性达到最优,这个难度就非常大了。笔者曾经牵头编写了某大型公司整个无线产品的coding style,有近200条规定,这些规定是几十个FPGA开发人员多年经验的积累,不按这个来,随时可能是个坑。好的coding style,不仅程序写得很美观,可读性好,也不容易出bug。一般来说,要成为一个有经验的FPGA设计人员,起码得从事相关工作5年以上,经历过3个以上大型项目的锻炼,而且需要有高手带。笔者曾经面试过的大量的FPGA开发人员,基本上从研究所、小公司或者小团队出来的,尽管有些工作了很多年,其底子也不是太好(这里没有歧视研究所和小公司的意思,术业有专攻而已)。因此,如果想在FPGA设计领域做得很深入,国内著名通信设备厂家绝对是最好的选择,没有之一。当然,如果有IC设计经验的人,转为FPGA开发,则会快很多,而且基本功也很扎实,但需要补充行业、系统经验。
 
FPGA从诞生起,就注定和ASIC站在不同的阵营。ASIC是固化好的芯片,不可以进行硬件编程(上面跑软件的不属于硬件编程)而随意改变硬件结构,而FPGA则可以根据设计者的需要改变硬件结构。因此,从灵活性来说,FPGA远强于ASIC芯片,而且FPGA开发周期也比ASIC要短,因此在有些领域或者场景下,FPGA比ASIC有优势,比如通信领域,协议标准还不成熟时,各个厂家大量的私有接口,使用FPGA能快速推出产品,而且高度灵活满足了非标准接口的开发。再比如工业领域,很多功能也可能是非标的,很难找到合适的ASIC芯片,这时FPGA也是很好的选择。但是FPGA也有它的弱点,为了保证灵活性,芯片里面预留了可配置逻辑,即相对ASIC增加了冗余的面积,这样既增加了成本也增加了功耗,这就决定了在有些领域里面它很难竞争过ASIC,比如终端产品,它对低功耗要求比较高。在标准化的产品、功能里面,它不需要那么灵活,这也不是FPGA的菜。因为终端产品量非常大,而且这个世界上大部分东西都是有共性的,即可以标准、通用的可能性大,因此,FPGA在整个芯片行业占比总体来说比较小。这些年FPGA总体市场规模在40亿美金左右(加上CPLD大概在50多亿美金),而2016年全球芯片市场规模大概在4000亿美金左右。
 
 
总体来说,由于FPGA本身的特点,决定了它不是在每个行业、产品都适合应用,标准化的,功耗要求很严格的,单价很低的产品都不适合,而这些恰恰是电子产品中占比大的,事实上,FPGA用得比较多的行业主要有通信、工业控制、医疗设备、及高端安防等,以及航天和军工(可靠性要求高,但量不大),未来可能数据中心和AI会是一个爆发点,后面会做分析。
 
FPGA在各行业的应用分析
在芯片应用行业,计算机和通讯是最大的两个领域,而对于FPGA来说,应用的第一大领域是通讯而不是计算机。PC机虽然数量及其巨大,但PC机里面没有FPGA芯片,原因是PC机是一个高度标准化的产品,因此PC机里面所有芯片用ASIC实现不仅可行,而且是经济的。而服务器、大型机里面开始逐步在使用FPGA,主要用于大数据的协处理,目前量还不大,远远无法和通信产品使用的FPGA相比,但未来潜力很大,后面会做进一步介绍。
 
 
通信产品可以从云、管、端层面来划分,端不大适合使用FPGA,如前所述,因为FPGA功耗相对ASIC偏大,至于前段时间吵得沸沸扬扬的lattice FPGA芯片用于三星和苹果7的手机案例,实属特例,千万不要认为未来FPGA能大规模进军消费电子,从而使得FPGA市场规模将成倍甚至数十倍的增加,至少短期内可能性不大。
 
通信行业讲的云主要包括核心网及各种服务器中心,在大数据和云计算没有规模应用之前,核心网设备里面基本没有FPGA,因为核心网所处理的协议其实非常标准化,变化不是太大,我们常见的2G-3G-4G以及即将到来的5G,其标准的核心部分实际上主要体现在物理层和逻辑层,而这些功能主要在管道(基站、基站控制、承载、传输等产品)中实现,这些标准变化快,各设备厂家为了抢占产品和技术的制高点,甚至在标准还未冻结之前就推出原型样机甚至小批量,而这只有FPGA能做到。一般来讲越往终端侧靠近,设备的数量越多,用的FPGA量也越多,越靠近核心网侧用的FPGA数量越少,但FPGA芯片的型号越高端,单片更贵。考虑量、价因素,最终还是基站侧用的FPGA总价高。
 
为什么是基站(也可以说是管道)最适合用FPGA,而且总价最高。首先因为基站的量非常大,基站虽然和手机的量没法比,但远多于核心网数量,据不完全统计,全球存量基站有数千万(5G部署后,可能会轻松破亿),每个基站里面有数块到10数块板子(根据配置不同而不同),除了电源和风扇板子没有FPGA芯片外,几乎每块板子都有FPGA芯片,有的还不止一颗。其次,基站里面用的FPGA型号也不会太低端,因为要处理复杂的物理协议、部分算法和逻辑控制,接口速率更是一个重要的考虑。一般来讲,基站中的芯片价格在一百到数千元人民币不等。价格过高比如几千甚至上万人民币的芯片,最多在初期原型验证用,不会大规模发货。最后,基站主要负责实现通信协议中物理层、逻辑链路层的协议部分,这部分内容每年都在升级,而且也比较适合FPGA来实现,尤其是协议未完全冻结时,最适合FPGA来处理,因为可以通过升级FPGA版本来应对协议变动,待协议完全冻结后,各设备厂家会逐步以ASIC来替代之前的FPGA,因为量达到一定程度后,ASIC的成本和功耗优势就体现出来了,而且大型设备商的ASIC化能力又非常强,因此FPGA在通信领域主要在初、中期应用比例高,后期能被替代的都被ASIC替代了,只留下一些接口类的FPGA,这也是FPGA厂商必须要面对的一个现实。
 
除了通信领域,FPGA在安防和工业领域也存在大量应用。在安防领域,视频的编解码比如MPEG和H.26x等协议基本由专用ASIC实现,但是前端的数据采集处理及部分控制逻辑可以由FPGA来处理,因为安防也是一个巨大的产业,因此,FPGA的用量也是非常可观的。工业领域主要用FPGA的灵活性来做控制,而且主要是规模比较小的FPGA。此外,军工和航天也是FPGA应用的一个重要领域,军工和航天对FPGA的可靠性要求更高,除了xilinx和altera有军工产品外,microsemi(前actel)的anti-fuse工艺(一次编程,可以更好的抗干扰和抗辐射等)FPGA因其高可靠性,主要用于军工航天产品。
 
FPGA未来几年的发展趋势
(1)技术层面
首先从技术上来看FPGA未来的发展,至少在几年内还是遵循摩尔定律的规则,工艺不断升级,目前xilinx 16nm工艺的FPGA已经成熟商用,altera被Intel收购后逐步会切到Intel的工艺上面来,现在也推出基于Intel 14nm工艺的Stratix 10等高端芯片。xilinx下一代产品会升级到7nm,重点应该还是瞄准通信和可能出现的新兴行业如大数据处理等。可以预见的是,未来5年内工艺升级仍然是FPGA发展的主要方向。
 
其次,要符合未来行业的应用。FPGA市场定位一定是以下游产业发展趋势为依据的。在过去十几年中,xilinx和altera、lattice等公司最重视华为、中兴、爱立信等公司的需求,因为FPGA在通信行业的市场占据了他们营收的半壁江山,所以这些年FPGA公司的Marketing相对来说是比较好做的。曾经有一次lattice的全球Marketing VP 来我这里进行市场需求搜集,说这场会议是他最重视的,虽有恭维之词,但我们确实给lattice创造了在他们公司单一芯片最大销量的记录。FPGA下一个应用热点,一定还是通信,从4G过度到5G,5G初期的量会很大,中后期逐步被ASIC化。另外可能大数据也会起来,毕竟FPGA协同CPU进行数据处理已经在多家大公司得到了验证,微软bing团队用于搜索引擎处理的著名论文更是让业界认同FPGA在数据处理中的优势,后面是逐步上量的过程。人工智能不会那么快上量,一来AI目前还刚起步,究竟是FPGA、GPU、CPU唱主角还在争论中,ASIC商用更早。二来FPGA在AI领域并没有真正成功的商用案例,从开始商用到最后上规模需要比较长的时间。但是一旦FPGA在AI应用成为共识,其市场潜力极其巨大,也许会使得FPGA市场这个盘子迅速突破徘徊多年的4、50亿美金。因为AI和行业密切相关,这决定了AI行业会有大量的中小公司,不像通讯设备行业这样集中到几个大公司,这些小公司没有使FPGA 成为ASIC的能力,可能自始至终都是用FPGA,即使强大到如BAT,在其利润非常可观的情况下,也未必会很快启动自己的ASIC设计来替代FPGA,因此如果AI行业中会大规模使用FPGA,FPGA行业规模将会得到快速增长。
 
(2)商业层面
芯片行业并购是这几年的主旋律,一方面是巨头们在某些细分领域遭遇到中小公司强有力的竞争,使得他们的利润率收到影响,收购可以减少竞争,维持一定的寡头利润。另一方面行业竞争使得巨头们需要抱团取暖,丰富自己的产品线以进军广泛的市场,如avago收购博通成立新的博通。还有的收购是为了增强协同效应,很显然,Intel 花160多亿美金收购altera不是为了获得altera在通信市场的份额,而是和自己的cpu在云计算、大数据处理方面的协同增效,以维持Intel在未来新兴行业的霸主地位。这样一来,xilinx可能会比较被动,虽然在云计算、大数据处理方面xilinx也推出相应的解决方案,而且也有下游巨头落地的案例,但是如果Intel 在市场上占据了主导,它一定会通过各种方式给xilinx设置相应的门槛,比如FPGA和Cpu之间自定义接口,或者牵头制定相关的协议标准等。xilinx未来是否也会走和altera相同的路还不好说,毕竟能买得起xilinx的芯片巨头一只手都能数的过来,而且还要有相关性,这个范围就更小了,让我们拭目以待。
 
各巨头市场份额及中国企业的机会
2016年FPGA的总体市场规模在40多亿美金,比2015年增长约10%左右,受通信市场运营商建设周期的影响,这几年FPGA的市场规模在40亿美金上下波动,总体比较平稳。以下是几个主流FPGA厂家15/16年的市场占有率和销售额,xilinx和altera遥遥领先,约占市场份额的90%左右,为第一梯队。Microsemi和lattice为第二梯队,中国厂商在里面属于Others阵营,市场份额大概在1%左右。
 
可以这么讲,目前中国IC厂商在FPGA这个细分领域和国外巨头的差距远远比其他领域要大,原因很多,其中很重要的一点是FPGA技术门槛非常高,核心技术只掌握在及其少数的公司手上,而且xilinx和atlera手头握有6000多项专利,对后进者形成很高的技术壁垒,国内厂商要么和国外巨头专利交叉授权,要么花钱买专利,但当前我们并没有多少专利可以和xilinx和altera进行交叉许可,购买难度更大,这不仅仅是资金的问题。从canyon bridge收购lattice被美国商务部否决来看,凡涉及到美国国家安全的高新技术公司,我国是不可能通过收购来获得的,lattice在行业内充其量是第二团队尚且如此,业界领先的企业我国更难获得。因此,国内FPGA的发展只能靠自主,虽然这个过程可能会很漫长,但除此之外没有更好的选择。
 
 
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
BAT抢人,传统芯片设计企业如何留住人才
BAT抢人,传统芯片设计企业如何留住人才

近期参加的几个芯片产业的活动中,与会者都不同程度的谈到了人才的问题。大家普遍的观点是,芯片企业人才的留存需要引进人才和培养人才两手抓。而另一个被提及较多的话题是当下互联网企业对芯片业的人才冲击,我身边就有不少这样的案例,大量芯片和电子产业的工程师尤其是优秀工程师正涌向BAT这些互联网企业,究其原因,一方面是互联网企业待遇优厚,另一方面是技

张首晟意外离世真的是“芯片阴谋论”?

6日,华裔物理学家张首晟教授家人发表声明,在与抑郁症顽强对抗后,张首晟于1日意外离世

定制化已成芯片设计业唯一出路?
定制化已成芯片设计业唯一出路?

具有讽刺意味的是,一度将成为适合所有场合的通用技术,现在却成了实现最具体的定制应用的使能技术。

中国18篇论文入选ISSCC 2019,对本土芯片产业意味着什么
中国18篇论文入选ISSCC 2019,对本土芯片产业意味着什么

“芯片奥林匹克-IEEE国际固态电路峰会(ISSCC 2019)中国发布会暨最新IC设计技术趋势”论坛在2018年11月30日(星期五)于中国集成电路设计业2018年会暨珠海集成电路产业创新发展高峰论坛期间召开,由ISSCC国际技术委员会中国区代表、新任中国半导体行业协会集成电路分会副理事长、来自澳门的余成斌教授(IEEE会士)主持。

确保芯片异构架构设计能正常工作有多难
确保芯片异构架构设计能正常工作有多难

单颗芯片或一个封装内集成了各种各样的处理器和本地内存,使得对这些器件的测试盒验证变得愈加困难,并且无法充满信心地签核它们。

更多资讯
简单几步让你看懂单片机时序图

操作时序永远是使用任何一片IC芯片的最主要的内容,看懂时序图,再操控这个芯片就非常容易了。而提取芯片器件手册上有用的信息是使用芯片的最基本步骤。

如何实现SoC全生命周期的监测?

SoC的设计越来越复杂,上市时间、软硬件集成、系统级验证、系统性能、异构、网络安全/功能安全等都是设计人员需要考虑的因素。流片前,设计师能通过仿真软件进行验证,但是流片过程中很多意想不到的结果,需要在流片后仍能被准确的检测出来。

如何将单片机的波特率作为形参的函数

不管是什么单片机,在使用串口通信的时候,有一个非常重要的参数:波特率。什么是波特率:波特率就是每秒传送的字节数。双方在传输数据的过程中,波特率一致,这是通讯成功的基本保障。

代码分享教你如何使用msp430单片机延时函数

今天看示例程序中出现了__delay_cycles()这个函数,在查找msp430x54x.h这个头文件的时候,发现这个头文件中没有该函数的声明,原来这个函数已经在IAR这个编译器中集成,这里总结一下__delay_cycles();这个函数的具体用法

如何控制51单片机液晶实现计时器的功能?

要想实现人机交互,显示装置是不可缺少的。前面讲到了如何利用单片机控制数码管的显示,这篇文章主要关于如何控制液晶显示,并在此基础上加上定时器的功能,把原来已用数码管显示的定时器搬到液晶屏上来。

电路方案