利用USB 3.0控制器芯片CYUSB3014实现FPGA与上位机之间的高宽带数据传输系统

2017-12-27 17:26:00 来源:AET电子技术应用
标签:
相关器件
现场可编程门阵列(FPGA)的高度灵活性和强大的数据处理能力,使其在越来越多的领域得到应用。USB 3.0也是目前主流的数据传输协议之一,具有速度快、功耗低等优点。将USB 3.0接口应用到FPGA上,能够有效地解决FPGA与上位机之间的数据传输问题,大大提高生产效率。文章利用USB 3.0的控制器芯片CYUSB3014实现了FPGA与上位机之间的高达390 MB/s的数据传输系统。
 
0引言
现场可编程门阵列(FPGA)具有极高的灵活性以及强大的数据处理能力,在科学研究、大型实验仪器和商用医疗设备等诸多领域中早已被成熟使用。但是FPGA本身并没有提供任何与上位机通信的接口,这使得FPGA与上位机之间传输数据变得很不方便。开发者每次都必须根据具体外设重新开发FPGA和上位机的数据传输系统,从而降低了开发效率。
 
通用串行总线(USB)3.0标准早在2008年就已经提出,现在已取代USB2.0成为USB主要使用版本。USB3.0比USB2.0有更高的传输速度和更低的功耗。USB3.0的协议速度高达5.0 Gb/s(625 MB/s),是USB2.0的10倍之多。CYUSB3014是赛普拉斯(CYPRESS)公司设计的一款USB3.0外设控制芯片,它的主要功能是在USB主机与外设之间传输高宽带数据。该芯片提供一个第二代通用可编程接口(GPIF II),开发者可以对GPIF II和FPGA编程,来实现从FPGA到USB控制器,再到上位机的数据传输通道。
 
本文利用USB3.0外设控制器CYUSB3014,实现了基于FPGA与上位机之间的数据传输接口设计[13]。经测试,本设计可以实现390 MB/s的FPGA到上位机的数据传输通道,以及355 MB/s的上位机到FPGA的数据传输通道,几乎达到了该芯片支持的最高速度(400 MB/s)。
 
1系统结构
 
 
图1为整个系统的结构。上位机的软件应用程序(例如MATLAB)通过调用驱动程序中的应用程序编程接口(API),向CYUSB3014控制器发送数据或从它接收数据;USB控制器芯片内部通过直接内存存取(DMA)互联结构建立USB端点到GPIF II的数据传输通道;FPGA内部接口逻辑模块负责其他逻辑模块与GPIF之间的数据传输。
 
图1系统整体结构本设计以FPGA接口逻辑为主设备,GPIF为从设备,接口逻辑负责控制整个系统的工作状态。为了通用性起见,本文设计了上位机对FPGA进行FIFO读写和寄存器读写共4种功能。FIFO读写可以完成高宽带高速数据的双向传输;寄存器读写则可以完成控制和监测的功能。这样的设计能够满足大部分FPGA设计对上位机接口的需求。
 
2控制器芯片工作原理
赛普拉斯公司设计生产的USB3.0外设控制芯片CYUSB3014具有高度集成的灵活特性,它具有一个可进行完全配置的并行通用可编程接口GPIF II,可与任何处理器、ASIC或FPGA连接。芯片集成了USB 3.0和USB 2.0物理层(PHY)以及32位ARM926EJS微处理器,具有强大的数据处理能力,并可用于构建定制应用。
 
图2表示了控制器芯片的数据输入输出。其中DMA描述符(DMA Descriptor)保存了DMA缓冲区的地址和大小,以及指向下一个DMA描述符的指针。套接字(Socket)是外设硬件模块与RAM之间的连接点,每个外设硬件模块(如USB、GPIF、UART和SPI)具有各自固定的套接字数量,简单来说可以把套接字看成外设的接口。DMA缓冲区(DMA Buffer)是RAM的一部分,用来缓存外设间需要传输的数据,这部分RAM的地址正是DMA描述符中保存的地址。
 
  
 
当外设之间进行数据传输时,例如将GPIF的数据传输到USB端点,控制器会自动加载相应的DMA描述符,然后从GPIF的套接字接收数据,保存到RAM中DMA描述符所指定的地址。当前DMA描述符处理完后,系统会自动加载下一个DMA描述符。DMA缓冲区的切换需要消耗几个微秒的时间,在切换DMA缓冲区时,当前的DMA通道不能进行数据传输[4]。当某个DMA缓冲区被写满,或者GPIF主动提交数据包时,系统开始把该缓冲区的数据发送到USB端点。从USB端点到GPIF的数据传输过程与之类似,只不过数据传输的方向刚好相反。
 
3系统设计
3.1控制器芯片固件设计
USB控制器芯片的固件设计包括GPIF II状态机设计和运行于芯片内部ARM微处理器上的可执行程序设计。其中,GPIF II状态机的设计是关键,它描述了USB芯片如何响应主设备FPGA接口逻辑模块发出的请求。
 
图3给出了USB控制芯片与FPGA的接口连接。其中,CLK是由FPGA提供的频率最高为100 MHz的时钟信号。DATA信号是双向数据线,完成GPIF与FPGA之间的双向数据传输。ADDR为地址线,用于选择使用哪个GPIF进程传输数据。GPIF共有4个独立进程,每个进程与相应的DMA通道绑定。FPGA通过改变地址线ADDR,从而选择使用哪个DMA通道进行数据传输。控制信号均由FPGA发出,控制信号包括SLOE、SLCS、SLWR、SLRD、PKTEND,这些信号均为低电平有效。SLCS为片选信号,系统工作时,SLCS必须始终有效(即始终为0)。SLRD为读请求信号,该信号有效时,GPIF会把缓存在RAM中的数据传输给FPGA。SLOE为输出使能信号,它的唯一作用是驱动数据总线DATA翻转。因为FPGA发出读请求后,USB芯片并不能立刻将有效数据传递到GPIF端点,从SLRD有效到DATA有效有两个时钟周期的延迟[5],因此需要额外的数据总线驱动信号SLOE。SLWR是写请求信号,该信号有效时,FPGA会发送数据给GPIF,GPIF随之将这些数据缓存在RAM中。PKTEND为传输结束信号,该信号用来标志此次数据传输结束。
 
 
另外,还有4个DMA标志信号FLAGX。这些信号由USB芯片发出,FPGA接收。这些信号并不是由GPIF状态机控制的,FLAG信号用来标志指定DMA通道对应的缓冲区的状态。
 
3.2FPGA接口设计
FPGA接口既要完成与USB控制器GPIF II对接,同时也要提供对FPGA内部逻辑模块的数据传输接口。FPGA接口逻辑是本系统的核心,它作为主设备,控制着从设备GPIF的工作状态。FPGA接口逻辑模块内部有一些标志工作状态的寄存器,用户可以通过上位机软件来配置这些寄存器,从而指定整个系统的工作模式。因此,在执行某种操作之前,需要通过上位机软件先对FPGA接口逻辑模块进行配置。
 
 
 
FPGA接口逻辑除了具有3.1节中与GPIF II相连接的接口外,还提供了其他接口与FPGA内部其他逻辑模块相连接。图4给出了这些接口信号。CLK是接口的工作时钟(100 MHz),同时这个时钟也是GPIF II的工作时钟。RST是全局复位信号。剩下的信号则用来完成FIFO读写和寄存器读写的功能。
 
在进行FIFO读操作时,使用的接口信号是RD_ACK、RD_VALID和RD_DATA。当RD_VALID有效时,标志着外部FIFO数据有效,RD_ACK作为应答信号告知外部逻辑已经完成对该有效数据的读取。使用时,先通过上位机软件对接口逻辑模块进行配置,配置的信息确定了接口模块将工作在读FIFO模式,同时还确定了此次读FIFO的数据个数。当读取FIFO的数据个数达到上位机所请求的个数时,接口逻辑模块停止读取外部FIFO,同时停止向GPIF发送数据,并且发出PKTEND信号,标志着此次传输结束。
 
在进行FIFO写操作时,使用的接口信号是WR_ACK、WR_READY、WR_DATA。当WR_READY有效时,标志着接口模块可以向外部FIFO写入数据,WR_ACK作为应答信号告知外部逻辑已经完成了数据的写入。与读FIFO类似,使用时先通过上位机软件对接口模块进行配置。配置信息确定了接口模块工作在FIFO写模式,同时确定了将要写入的数据个数。
 
 
图5FPGA接口逻辑状态机图5给出了FPGA接口逻辑模块的状态机向GPIF收发数据时的工作流程。系统最初处在空闲状态(IDLE),然后根据配置信息确定的工作模式,以及DMA通道的FLAG标志信号,进入相应的状态机流程中。
 
此外,接口逻辑模块还实现了寄存器读写的功能,寄存器读写使用的DMA通道与FIFO读写的通道相同,只是传输的数据个数始终为1。
 
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
从FPGA到ACAP,“万能芯片” 的华丽转身
从FPGA到ACAP,“万能芯片” 的华丽转身

FPGA被誉为“万能芯片”,能量就只有这么一点?当然不是的,目前FPGA在数据中心领域已经得到认可,加速卡解决方案成为数据中心的首选。而人工智能通过深度学习算法在认知智能和推理智能上遇到难题,擅长推理的FPGA被寄予厚望。

基于SRAM工艺FPGA的保密性问题

在现代电子系统设计中,由于可编程逻辑器件的卓越性能、灵活方便的可升级特性,而得到了广泛的应用。

如果使用FPGA配合DSP来提升安全能力?

对于基于数字信号处理器(DSP)的设计,如果DSP没有足够的安全能力,便特别容易受到入侵。在许多应用中,如果使用FPGA以作配合来卸载DSP的部分工作,便可以轻易实施先进的安全功能。

详细分析CORDIC算法的原理及其FPGA实现方法

在无线电接收机系统中,由于会受到发射机运动、接收机运动和标准频率随时间动态变化等因素的影响,其接收机接收信号往往会发生频率偏移,因而需要进行频偏校正。在扩频通信系统中,频偏校正电路能消除中频偏移对接收机扩频码的捕获以及数据解调性能的影响,从而提高接收机的性能。

SM3算法简介和SM3算法的FPGA设计与实现

在分析SM3算法的基础上详细介绍了目前Hash函数的4种硬件实现策略,同时给出了迭代方式和基于充分利用时钟周期的循环展开方式下的FPGA实现。该循环展开方式有效地减少了一半的工作时钟数和11%的运算时间,吞吐量提高了11%,且占用的硬件资源较少。

更多资讯
《深度强化学习》手稿开放

一年前,机器之心发布了加拿大阿尔伯塔大学计算机系博士 Yuxi Li 的深度强化学习综述论文,该论文概述了在深度强化学习(Deep Reinforcement Learning)方面喜人的进展。而这本刚上线的《深度强化学习》手稿对前面的版本《深度强化学习综述》做了大规模的改进;从一年多前的 70 页扩充到现在的 150 页。

GICv3架构中,对中断的分组解析

GICv3架构中,对中断进行了分组。分成了以下三个组

想要学好大数据需掌握这十二大技术

大数据是对海量数据进行存储、计算、统计、分析处理的一系列处理手段,处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。

35岁咋就成了某些工程师的坎儿?

在工程师这个“贵圈”有个不成文的观念,据说,如果过了35岁,还在吭哧吭哧地干技术,那就是人生的loser,以激进著称的华为甚至也貌似传出过淘汰34岁以上工程师的流言。本来嘛,靠着在百家讲坛上讲三国还清房贷并成功逆袭人生的易中天教授就曾经提到过,‘古人三十六岁就自称老夫’,按古人虚岁方式计算,现如今的35岁正好是古人的36岁。一位“老夫”,

C语言嵌入式系统编程

模块划分的"划"是规划的意思,意指怎样合理的将一个很大的软件划分为一系列功能独立的部分合作完成系统的需求。C语言作为一种结构化的程序设计语言,在模块的划分上主要依据功能(依功能进行划分在面向对象设计中成为一个错误,牛顿定律遇到了>相对论), C语言模块化程序设计需理解如下概念

Moore8直播课堂