基于FPGA的自动温度采集控制系统设计

2018-09-06 10:57:51 来源:elecfans
标签:

随着当前工业控制自动化日益普及,对于工作环境中的温度控制也越来越重要。本设计即是针对某些需要持续恒温的特殊环境而设计的自动温度采集控制系统。该系统采用FPGA作为硬件核心部分,有效地利用FPGA在可编程门阵列方面的优点,最大限度的使硬件电路软件化,减少了可视硬件的规模,降低了硬件加工、布线以及元器件采购方面的成本与复杂性,从而降低了故障排查方面的繁杂性。使硬件电路简洁,降低了整体占用的空间。相对于其他的温度控制系统,具有小巧,维护维修方便的优点,大大的提高了可维护性,同时由于采用的元器件都比较常见,整体成本较低。因此很适用于一些小规模同时对温度精度要求不高的场合。

 

1 系统工作原理

通过传感器实现对外界环境温度的采集,并将采集到的温度信号传送给FPGA芯片,FPGA芯片能够自主地对采集的温度信号进行处理,并能通过LED显示当前温度,同时自动将采集到的温度信号与预设的温度进行比较得出正确的比较结果,通过I/O端口输出控制外围设备对环境温度进行控制,从而达到实时温度控制的目的。本设计中主要有温度采集模块、FPGA芯片模块、LED数字显示模块三部分,系统原理框图如图1所示。

 

 

通过FPGA编程来实现对温度传感器的实时温度数据采集,并且实时地处理采集到的数据,将采集到的数据转换为BCD码通过8段LED数码管显示出此前的温度。与此同时,采集到的数据将会与存储在芯片里的温度预设值比较,并自动产生比较结果,控制外围设备对被测空间的温度实施调节控制,从而达到恒温的目的,温度传感器采集出的温度数据通过二进制数组片选选择数据通过LED显示,选择的数据再与标准温度进行比较,温度过高降温处理、温度过低则升温处理。

 

2 主要功能模块的实现

控制模块如图2所示,其中两个PNP三极管的作用是在P1输出控制信号时起到开关作用,根据图中的三极管接法,当输出控制信号为低电平时,三极管通导,此时P2继电器中有电流通过,使其3和6引脚接通。设计中由于采用的三极管对电流的要求较高,而又由于继电器内部可以认为相当于是一个电感,因此在继电器刚刚上电的时刻,三极管发射极和集电极电流将会很大,很容易将三极管烧毁,因此加装稳压二极管D2,使继电器上电工作的时刻,瞬间电流通过二极管回路而不是通过三极管,就可以有效保护三极管不被烧毁。

 

 

外部输出信号为低电平时,p2回路导通,引脚6与引脚3有电流,p3导通开始工作,当温度过低时,灯泡点亮;当温度过高时,风扇工作。从而实现对温度的实时控制。

 

3 软件设计及仿真结果

本设计中采用FPGA芯片作为核心控制部分。在本设计中软件模块主要包括温度传感器控制及数据接收模块,温度数据处理模块,温度显示模块。

 

3.1 温度数据处理模块

传感器数据处理模块tempture的顶层电路图如图3所示,它的作用主要是将12位二进制的温度信号转换为用BCD码表示的3位十进制数,输入的12位温度信号中其中的高8位二进制代码转换为2组4位的BCD码,例如输入二进制码为“00010110”,代表十进制数为“22”,输出 BCD码为“00100010”对应的十进制数个位、十位均为“2”和“2”;然后将剩余的低4位二进制代码转换为4位BCD码,如输入二进制码为 “1110”,代表10进制数小数为“0.875”,若只取一位小数位,则取“8”,其BCD码可表示为“1000”。通过三个输出端口分别输出十位、个位和小数位。

 

 

对温度数据处理模块tempture-进行仿真测试。假定预设置输入温度二进制的代码为“000101111011”,则其对应十进制数应为:“23.6”。仿真结果如图4所示。

 

根据顶层原理图,a[3. 。 0]输出为温度数值的十位数,b[3..0]输出为温度数值的个位数,c[3..0]输出为温度数值的小数位。则仿真图中,shi、fen、ge三位输出的数字分别为“2”、“3”、“6”,仿真结果与预测转换结果一致。

 

3.2 温度显示模块

设计采用了4个8段式的LED数码管可以动态显示温度的百位、十位、个位与分位。下图为温度显示模块的顶层电路,由图可知,模块由片选模块、译码转换模块与计数器三者组成。片选模块主要由一个二进制计数器和四选一电路组成。

 

 

当系统工作时,先将二进制计数器在clk控制下依次连续产生4个两位二进制数组,来控制片选模块选择性的输出shi[3..0]、ge[3..0]、fen[3. 。 0]、bai[3. 。 0]四路输入信号中任意的一路。将选出的这一路输入信号交给译码转换模块,利用二进制计数器产生的连续二进制数组,可以控制译码器依次输出对应的4位二进制数组来依次点亮各个LED数码管。最后,可以在LED上显示出数字,读取结果。

 

对温度显示模块display进行软件仿真测试,设置输入shi[3..0]、fen[3..0]、ge[3..0]分别是“0100”、“0011”、“0010”,则其对应10进制数应为“43.2”。仿真结果如图6所示。

 

 

由仿真示意图可看出,片选信号由时钟信号控制循环变化,而对应输出的ledout端也依次输出shi,fen,ge,bai四个端口输入的数据,且输出的是8位LED数码管显示码,从图中可以读出,当片选信号为“0111”时,对应的输出信号ledout为“11000000”,即表示在数码管上的显示为 0,小数点不亮,表示百位为0;当片选信号为“1011”时,对应的输出信号ledout为“10011001”,在数码管上的显示为4,小数点不亮,表示十位为4;当片选信号为“1101”时,对应输出ledout为“10110000”,在数码管上的显示即为3,表示个位为3;当片选信号为 “1110”时,对应输出ledout为“00100100”,在数码管上的显示即为2,小数点点亮,表示小数位为2。动态扫描后可知,数码管上显示的内容即为“043.2”。与输入的数据相同,说明程序编写正确,系统运用良好。

 

4 测试数据

由表1数据显示,LED数码管上显示的温度与实际测量的温度,从表中可以得出,两者近似相等,误差在0%~0.58%之间,是可以接受的误差范围。表2是指设定了所需温度,记录温度变化的过程与实现这一目标所需的时间。例如第一次中,我们设定的温度为20℃,开始LED上显示的温度值为17.5℃,最后经过自动控制系统温度升高到20.2℃,这一过程共用时30分钟。误差也是存在的,误差在1%左右,也是可以接受的范围。

 

 

5 结束语

从测试结果上看,设计的主要目的已经达到,系统运行可靠,精度也已达到设计要求。但设计中仍存在一定缺陷,主要缺陷在于本设计中所使用的预设温度是固化在程序中,一旦系统开始工作,就不能再更改预设的温度,因此本系统比较适用于不会经常变更设置温度的场合。变更设置温度的场合。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
从FPGA到ACAP,“万能芯片” 的华丽转身
从FPGA到ACAP,“万能芯片” 的华丽转身

FPGA被誉为“万能芯片”,能量就只有这么一点?当然不是的,目前FPGA在数据中心领域已经得到认可,加速卡解决方案成为数据中心的首选。而人工智能通过深度学习算法在认知智能和推理智能上遇到难题,擅长推理的FPGA被寄予厚望。

重庆发集成电路产业宣言,2022我们走着瞧

加快推动集成电路产业创新发展,重庆再出大手笔!10月16日,重庆日报记者从重庆市科委获悉,《重庆市集成电路技术创新实施方案(2018—2022年)》(以下简称《方案》)近日出台。

VCSEL产业将迎接爆发性成长?晶成半导体VCSEL出货明年看涨

10月1日,晶成半导体正式由晶电分割成立,为晶电持股100%子公司,以其独特的磊晶与晶粒制程等核心技术,致力于VCSEL与GaN on Si电力电子元件等半导体代工业务发展。且挟着母公司晶电的技术基底,目前是唯一可从磊晶(Epi)做到芯片(Chip)的厂商,提供整合性代工服务。

间谍芯片”引发供应链危机,中国如何应对?

自2018年开始,中美两国之间的贸易摩擦一直就没有停歇过。随着美国对华产品加征关税范围不断扩大,中美两国关系愈发紧张。而就在此时,美国彭博社的一篇“间谍芯片”报道,更是火上浇油,给中国电子产业链带来新一轮危机!

IGBT市场高速增长,斯达半导体冲刺IPO
IGBT市场高速增长,斯达半导体冲刺IPO

近年来,在国际节能环保的大趋势下,新能源汽车、变频家电、新能源发电等产业发展迅速,工业控制及电源行业市场也逐步回暖。IGBT模块是变频器、工业控制、电源行业以及新能源汽车的核心元器件,下游市场的繁荣对IGBT模块需求逐步扩大,IGBT市场得到高速增长。

更多资讯
《深度强化学习》手稿开放

一年前,机器之心发布了加拿大阿尔伯塔大学计算机系博士 Yuxi Li 的深度强化学习综述论文,该论文概述了在深度强化学习(Deep Reinforcement Learning)方面喜人的进展。而这本刚上线的《深度强化学习》手稿对前面的版本《深度强化学习综述》做了大规模的改进;从一年多前的 70 页扩充到现在的 150 页。

GICv3架构中,对中断的分组解析

GICv3架构中,对中断进行了分组。分成了以下三个组

想要学好大数据需掌握这十二大技术

大数据是对海量数据进行存储、计算、统计、分析处理的一系列处理手段,处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。

基于SRAM工艺FPGA的保密性问题

在现代电子系统设计中,由于可编程逻辑器件的卓越性能、灵活方便的可升级特性,而得到了广泛的应用。

如果使用FPGA配合DSP来提升安全能力?

对于基于数字信号处理器(DSP)的设计,如果DSP没有足够的安全能力,便特别容易受到入侵。在许多应用中,如果使用FPGA以作配合来卸载DSP的部分工作,便可以轻易实施先进的安全功能。

Moore8直播课堂