TD-LTE外场性能研究

2014-05-12 11:15:49 来源:互联网
分享到:
标签:

 

本文针对TD-LTE在中国移动商用网络下的性能及产品优势进行了分析和探讨。

一、背景介绍

自2008年底3GPP发布了LTE第一个标准版本Rel-8,到2009年底北欧运营商TeliaSonera率先商用,再到2013年7月韩国运营商全球首次商用Rel-10关键技术之一的载波聚合功能,LTE标准化与商用推进的步伐从未停歇。根据GSA统计,截至2014年2月底,LTE已在全球101个国家的274个运营商获得商用,发展势头之迅猛远超之前所有通信技术。在GTI的推动下,LTE TDD(又称TD-LTE)得到了良好协同发展[1].

2013年12月4日,国内开启了4G(第四代移动通信技术)即LTE在中国大陆正式商用的大门。本次官方向中国移动、中国电信和中国联通发放了TD-LTE牌照。仅中国移动而言,其2014年目标为建设50万个基站,预计明年再加20万个站后接近其GSM二十年部署基站数的90%.

技术层面上,中国移动的TD-LTE以八通道双极化智能天线为主而日本软银主要复用PHS(国内又称小灵通)的八通道圆阵天线,其他LTE TDD运营商以两天线部署为主,同时各家应用的频谱也不尽相同(大多为B41、B38、B40,只有中国移动以B39作为室外部署主要频段),结合供货设备商、采购设备质量、站址条件、应用场景及应用业务等差异将导致TD-LTE网络性能和用户体验存在差异。因此,自2010年初起在中国大陆上进行实验室、小规模外场、大规模外场、扩大规模外场、商用后评估等一系列性能研究测试,为TD-LTE全国范围部署积累商用经验。

本文以中国移动在某省的商用示范片区为例,针对TD-LTE外场性能方面进行验证和探讨,以期对未来部署和优化提供更为准确的参考数据。

二、理论分析与需求

3G向4G演进的背后驱动力是移动设备新服务的创新和发展,并通过可用于移动通信系统的技术进步来实现。从通信技术本身来看,LTE相对3G标准是革命性的。为支持以数据交换类型为核心的新业务,特别是互联网产业带动的IP业务,LTE无线接口的主要底层设计参数有[3]:数据速率、延迟、容量等。本文重点关注数据速率。

以TD-LTE下行链路为例,20MHz系统带宽、3D:1U时隙配比、10:2:2特殊时隙配置下的物理层理论峰值速率约120Mbps.由于TDD系统的上下行链路共享频谱,因此应当折算为全时频谱利用的速率,即120Mbps / (4ms/5ms) = 150Mbps,经过香农公式迭代计算可得信噪比需求至少为24dB.但从3GPP协议角度来看,该计算并不严谨。为获得Rel-8标准的理论峰值速率,协议规定需要选择的传输块大小TB size为75376比特,对应的MCS需要达到28[4].这里的SINR由基站根据UE的信道质量信息CQI反馈计算得到,并且多高SINR才能影射到MCS28并实现峰值速率传输还与系统厂商实现算法和终端解调能力有关。实际网络中,通常需要30dB左右的信噪比才能获得理论峰值速率。

上述速率为物理层传输速率,而实际应用通常考虑的是PDCP层速率,假定误块率BLER为10%,可简单折算PDCP层速率为物理层传输速率的90%.

对网络运营商而言,用户体验在流量经营的时代是核心竞争能力之一。因此,爱立信结合全球商用经验提出了应用覆盖APP coverage的概念,如下图所示。智能手机及相关应用已经成为移动通信的主流,因此如何保障终端用户获得主流应用的良好体验成为网络运营商差异性的重要体现,同时分组交流类业务的接通率、掉线率等传统网络关键性能指标KPI也不再像电路交换类业务那么敏感。下图中三个百分比对应网络覆盖,三个数字为各覆盖百分比下应保障的应用层速率,单位为Mbps,其值可能因不同运营商而不同。但是为了确保主流应用的良好用户体验及网络性能竞争优势,爱立信建议值为1、10、30.通常,商用网络测试表明:90%点的连续覆盖速率约为50%点的平均覆盖速率的1/3.



以LTE发展最为活跃的美、日、韩为例,PCMagazine测试报告:北美LTE FDD网络中AT性能较好(15MHz带宽),但也只有17Mbps的平均速率和8Mbps的连续覆盖速率,仍有一定的优化空间。相对而言,Signals Research在东京和首尔的测试结果更为优异[5]:东京为软银LTE TDD商用网络,平均速率和连续覆盖速率为31Mbps和10Mbps;而LGU+在首尔应用3GPP Rel-10的载波聚合(10+10MHz带宽)技术后达到了62Mbps的平均速率和20Mbps的连续覆盖速率,为业界树立了新的性能标杆。



三、测试片区及测试工具和方法


如本文开始说讨论,部署频段、供货厂商、采购设备、站址条件、应用场景及业务等差异将导致各运营商的网络性能和用户体验不尽相同。为此,我们选择了中国移动某省的TD-LTE商用示范区域进行测试,其网络状态可被视为预商用网络状态。示范区及测试线路如下图所示:共57个连片基站(其中33个D频段8通道站位于中心,22个F频段8通道站位于周边),带宽20MHz,平均站间距470米,平均站高约30米。网络配置为:3D:1U时隙配比、10:2:2特殊时隙。



测试使用了两类终端,分别为Quanta D2 (CAT3),HISI E5776 (CAT4)。测试软件使用CDS7.1版本。对于上下行速率测试采用单UE在网络中分开进行上下行测试的方法,均使用FTP业务。

四、测试结果

本次道路测试结果通过CDS导出的网络覆盖统计,可见网络覆盖状况良好,但SINR均值表明还具有一定的优化空间。



通过CAT3 UE获得的CRS-RSRP和CRS-SINR打点图如下所示。



采用CAT3 UE进行道路测试获得的上下行PDCP速率分布如下图所示:



上述测试结果为采用CAT3和CAT4两类终端获得各性能指标累积分布函数CDF中50%点即统计平均的数值。考虑CAT3和CAT4两类终端进行测试是因为:当前商用终端大多为CAT3,其测试结果代表了大多数终端的用户体验;而CAT4终端具有更高能力,可以充分体现出测试片区的网络承载潜力。

实际商用网络中,由于多用户联合调度以及小区间一定程度干扰等因素的存在,通常平均速率为理论峰值速率的三分之一左右,以CAT3 UE为例,约为80 / 3 = 27Mbps,接近本文第二章给出的应用覆盖推荐均值。表格中好色高亮的测试结果远好于该指标是由于该片区采取了一定程度的深度优化,其性能好于本文第二章第三方咨询机构展示的软银在东京的测试结果,是由于中国移动应用的8通道智能天线相比8通道全向天线性能更好。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
LoRa传的远、信噪比高、误码率低,依靠的是这些
LoRa传的远、信噪比高、误码率低,依靠的是这些

LoRaWAN是由LoRa联盟推出的一个低功耗广域网规范,这一技术可以为电池供电的无线设备提供区域、国家或全球的网络。

Apple Watch销量飙升,被称为市场上最畅销的LTE可穿戴设备

调研公司Canalys今日发布报告称,2017年苹果公司Apple Watch智能手表出货量为1800万部,较2016年增长54%。

听说没有比这更全的无线通信频率分配表了!
听说没有比这更全的无线通信频率分配表了!

目前,全球最有可能优先部署的5G频段为n77、n78、n79、n257、n258和n260,就是3.3GHz-4.2GHz、 4.4GHz-5.0GHz和毫米波频段26GHz/28GHz/39GHz。

最全面的NB-IoT技术解读
最全面的NB-IoT技术解读

2015年9月份,全球通信业对共同形成一个低功耗、广域覆盖(LPWA)的物联网标准达成共识, NB-IoT标准应运而生。而今年,随着NB-IoT即将完成测试,正式进入商用阶段,业界对于它的关注度和讨论也是逐渐升温。

这个话题有点敏感,5G基站和4G基站如何“搞基”?
这个话题有点敏感,5G基站和4G基站如何“搞基”?

前两天,有网友留言问5G基站和4G基站如何协同工作,今天我们就来探讨探讨这个问题——

更多资讯
只用三年开发出全球第一款可重构多频多模射频前端芯片,这家广州的公司是怎么做到的
只用三年开发出全球第一款可重构多频多模射频前端芯片,这家广州的公司是怎么做到的

6年前,哈佛大学博士后、清华大学博士李阳放弃美国的高薪工作,选择了来到广州创业。尽管团队里只有自己和搭档两个“光杆司令”,公司也只有空荡荡的四面墙,但李阳却觉得自己比任何时候都豪气万丈,他和搭档立下了自己的创业愿景:创新引领者,行业领导者。

EMC对策产品:高电容紧凑型汽车贯通滤波器

TDK株式会社扩大了其应用于汽车的3端子贯通滤波器产品阵容。新YFF18AC0J105M型产品采用IEC 1608封装(EIA 0603)且尺寸紧凑,仅为1.6 mm x 0.8 mm x 0.6 mm,且具有在业内同等尺寸贯通滤波器中电容最高*(1 µF)的特点。

MACOM和意法半导体将硅上氮化镓推入主流射频市场和应用

横跨多重电子应用领域的全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST)和世界领先的高性能模拟射频、微波、毫米波和光波半导体产品供应商MACOM科技解决方案控股有限公司 (简称“MACOM”)今天宣布一份硅上氮化镓GaN 合作开发协议。

SOT502 ISM频段小型射频功放晶体管可为射频能量应用提供600W功率

安谱隆半导体(Ampleon)今天宣布,推出600W的BLF0910H9LS600 LDMOS功率放大器晶体管。

是不是觉得麦克斯韦方程组太枯燥,来听点说历史故事帮忙理解吧
是不是觉得麦克斯韦方程组太枯燥,来听点说历史故事帮忙理解吧

是不是有人跟你提及麦克斯韦方程组之美,你是不是相当无感?

Moore8直播课堂
电路方案