网络分析仪校准很头疼,一文让你get到三大要点

2017-01-18 14:28:40 来源:微波射频网
标签:

是不是每次测量一个新的项目前都必须做校准?

这个是不一定需要的,尽量将每次校准的state存 入VNA,名字最好为校准状态,例如频率范围,输入激励功率等。如果有新的测试项目,但是它的测试条件和已有状态相似,且load state后,检查校准状态良好,就可用使用以前的校准状态,而不需要重新校准。将校准state保存并调用的好处在于:Calibration Kit也是有使用寿命的,多次的校准,会是的校准件多次和校准电缆接触,可能污染校准件,使得校准件特性发生改变,影响下一次校准。尽量养成如下习惯:将 网络分析仪的port不用的时候加上防尘套;对测试电缆进行标号,使得VNA每个port尽可能固定连接某个电缆;对测试电缆不用时,也需要加上防尘套; 尽量不用很脏的测试电缆等。

 

VNA的校准是精确测量前必要的准备

以单端口DUT测量为例,测试模型参考one port error model。

 

由 于VNA的输出和DUT的待测输入一般都存在中间过渡件/连接件,使得理想网络分析仪的测试平面和DUT的待测平面间出现了一个误差网络。对于单端口误差 模型,有三个误差项。为了求解三个误差项,由线性矩阵理论,需要建立三个不相关的方程来求解。校准的原理就是建立这三个方程。

 

通过在测试面 加入三个已知特性的校准件,例如开路件,反射系数理论上为1,短路件,反射系数理论上为-1,负载件反射系数理论上为0。通过VNA测量这三个校准件,得 到实际测量结果。也就得到包含三个误差模型的线性方程,通过求解就能得到三个误差项。在后续的测量中,在直接获得的测试结果中,先通过数学运算,消除三个 误差项带来的影响,显示给用户的就是校准后DUT的特性。

 

当然两端口误差模型更加复杂,分为正向和反向,正向具有6个误差项,反向也有6个误差项,总共有12个误差项需要求解,求解方法可用参考“RF Measurement of Die and Packages”

 

当然一般网络分析仪提供的二端口矢量校准方法为SOLT,通过单端口的分析,其实校准件的本质是建立误差模型方程,选择不同已知反射系数的校准件,就得到了很多不同的校准方法,例如LRM,LRRM,TRL等等。

 

当然校准的本质也是去嵌入(De-embedding)的过程,去嵌入的本质得到误差网络的S参数,通过转换到T参数,运用级联运算进行消除。去嵌入还能够消除非传输线网络的S参数,应用也比校准广泛。

 

实际校准的方法:

尽管一般VNA的User Guider上都有仪器校准的方法,但是还有很多细节需要注意的:

1、设定测试参数

选 择测试频率范围:一般的频率范围要稍微大于测试指标规定的范围,选择VNA Port激励功率,对于无源器件,可以选择稍微大的激励功率,例如0dBm,但是对于测试Amplifier等小信号器件,一般激励信号要小于器件的 1dB压缩点,对于Power Amplifier等大功率器件,需要减小VNA的输入信号功率,同时要在PA的输出和VNA的输入间加入衰减器。但是过分减小VNA的输入信号功率,可 能会使得S11和S22测量误差增大。如果对于多端口VNA,还需要选择测试port。

 

2、选择校准件,选择校准方法,通过仪器校准的Guide完成校准

每 个公司都有不同的规格的校准件,例如N型的,SMA型的,这个在校准之前一定要选择好,这个是因为厂家提供的校准件,开路短路负载等也不是理想的反射系数 分别为1,-1和0。同公司的VNA中会定义校准件,将校准件的特性预先存入VNA,以便校准时求解误差方程。因此,如果校准件选择不当,校准的意义也就 没有了。

 

在校准过程中,显示format对于校准是没有影响的,可用选择显示S11或者S21,显示可用为VSWR或者Smith Chart,这个不影响校准。已SOLT为例,首先进行单端口校准,分别将开路短路负载加至VNA的port1和port2,按照仪器指示进行完成校准,再连接Thru件,完成直通校准。

 

3、校准结果检查

这一步不是必须的,但个人觉得作为一个优秀的射频工程师,这一步是至关重要的。

开路校准特性的检查:校准完成后,将开路件取下,显示S11和S22的Smith Chart,良好的校准使得测试显示曲线在整个测量频率范围内都在Smith Chart的开路点。负载校准特性的检查:校准完成后,将测试端口连接负载件,测试S11和S22的Smith Chart,良好的校准使得测试曲线在整个测量频率范围内都在Smith Chart的中心点。

 

直通检查:校准完成后,将两端口连接Thru件,测试S12或者S21的dB曲线,良好的校准使得测试曲线在整个频率范围内平坦,且都在0dB。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
英国比克科技发布快速射频信号合成器AS108和网络分析仪标准检测件TA43x

英国比克科技(Pico Technology)于2018年9月25日在慕尼黑印度电子展和欧洲微波展同时发布两款射频新产品:快速射频信号合成器AS108和矢量网络分析仪标准检测件TA430和TA431。

示波器不为人知的12项功能,都很有用哦

示波器是人们设计、制造或修理电子设备不可或缺的工具。在现今这个快节奏的世界里,工程师们需要利用目前最好的工具来快速准确地解决他们所遇到的测量难题。在工程师看来,示波器是成功应对现今测量难题的关键所在。现代数字示波器拥有可帮助节省时间的特性,如深存储和一系列分析工具等,可简化高速数字设计带来的挑战。

开关电源测试的9大法则

在各种输入和输出状态下将模块输出短路,模块应能实现保护或回缩,反复多次短路,故障排除后,模块应该能自动恢复正常运行。

世强在慕展带来网络分析仪表、低功耗测试等测试测量最新产品及解决方案VF

在2018年3月的慕尼黑上海电子展上,世强元件电商带来了物联网、工业控制及自动化、汽车等九大分区的多款创新产品和在不同领域的应用,为工程师提供了全面的整体解决方案,吸引了众多关注。

基于J750测试机的S698PM测试程序调试
基于J750测试机的S698PM测试程序调试

S698PM芯片是一款抗辐照型的高性能、高可靠、高集成度、低功耗的多核并行处理器SoC芯片。

更多资讯
Pickering Interfaces最新推出的4、6通道LXI微波多路复用 解决方案具有出色的射频特性和可重复性

2018年9月17日,于英国滨海克拉克顿镇,作为电子测试和验证领域模块化信号开关与仿真产品的领导者,英国Pickering公司于近日发布了新款四通道和六通道的LXI 50Ω微波多路复用开关,外形紧凑,高1U或2U,适合机柜安装。

Pasternack推出新型军用射频电缆组件

Commercial Off-the-Shelf MIL-DTL-17 Cable Assemblies Feature Operating Frequencies of up to 12.4 GHz

光学频率梳为什么是重大突破?

光学频率梳是继超短脉冲激光问世之后激光技术领域的又一重大突破。光学频率梳由“锁模激光器”产生,是一种超短脉冲(飞秒1e-15s量级)的新型激光光源。飞秒激光脉冲是通过锁定飞秒激光器内所有能够振荡的激光纵模的相位而形成的周期性脉冲。

这种振荡电路只能用32.768KHZ 的晶体?

振荡电路用于实时时钟RTC,对于这种振荡电路只能用32.768KHZ 的晶体,晶体被连接在OSC3 与OSC4 之间而且为了获得稳定的频率必须外加两个带外部电阻的电容以构成振荡电路。

激光四大特性:高亮度、方向性好、单色性好、高相干性

激光自发明以来,凭借着自身优良的特性,在工业加工、医疗美容、科学研究等领域获得了极为广泛的应用。激光主要有四大特性,分别为高亮度、方向性好、单色性好、高相干性。这些特性彼此关联,使得激光能够适用于不同的场景。

Moore8直播课堂