看完这篇才知道射频功率测试,就是这么简单

2018-02-01 16:08:11 来源:21IC
标签:
自从第一台无线电发射机诞生之日起,工程师们就开始关心射频功率测量问题,知道今天这依然是个热门话题。无论是在实验室,产线上还是教学中,功率测量都是必不可少的。
 
在无线电发展初期,测试工程师所面对的大多数是连续波、调幅、调频、调相或脉冲信号,这些信号都是有规律可循的。例如,连续波(如图1)调频或调相信号的功率测量都是很简单,只需要测量其平均功率;调幅信号(如图2)的功率与其调制深度有关,而脉冲信号的特性是以脉冲宽度和占空比来表达。对于以上这些模拟或模拟调制信号,射频功率测量所关心的基本上都是平均功率和峰值功率。
 
 
而现在,特别是20世纪90年代以后,数字通信开始快速发展,射频功率测量的重点也开始有些变化。因为数字调制信号(如图3)的包络无规律可循,其最大和最小电平会随机变化,而且变化量很大。为了描述这类信号的特征,引入了一些新的描述方法,如领道功率,突发功率,通道功率等。很多传统的功率计已经无法满足数字信号功率的测量要求,一部分功率测量的任务已经开始由频谱分析仪来完成。
 
 
下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事——在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了唯一性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为W,mW,dBm。
 
频谱分析仪和功率计都是可以测量射频功率的,其中功率计又分为吸收式功率计与通过式功率计两种。
同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。
 
射频功率的测量方法:
· 频谱分析仪测量
· 吸收式功率测量
· 通过式功率测量
 
1、频谱分析仪测量
频谱分析仪(以下简称频谱仪)是一种基础的频域测试测量仪器,图4为采用数字中频技术频谱仪的基本工作原理。被测信号经过低通滤波器后进入混频器,与同时进入混频器的本地振荡器信号进行混频。由于混频器是非线性器件,所以会产生互调信号,落入滤波器的信号经过ADC,再依次进入中频滤波器,包络检波器,视频滤波器,视频检波器,最后将轨迹显示在屏幕上。
 
在进行射频功率参数测量时,频谱仪具有以下特点:
1)频谱仪可以测量极小幅度的射频信号,这取决于频谱仪的一项关键指标-DANL(Displayed Average Noise Level),中文“显示平均噪声电平”,例如RIGOL公司DSA875该指标可达-161dBm/Hz,图5为DSA875测量一个频率999MHz,功率-130dBm的信号结果,信号清晰可见,这是任何功率计所望尘莫及的。
 
 
2)频谱仪有很大的幅度测量范围,可以从DANL到安全输入电平+20 dBm甚至+30dBm,动态范围可达190 dB!而目前市面上功率计最大动态范围基本上都在100 dB以内,如:
 
德国某公司NRP8S: –70 dBm 到+23 dBm
 
美国某公司U2041XA: –70 dBm 到+26 dBm
 
3)频谱仪可以测量信号的频率分量,并且可以进行窄带测量。例如RIGOL公司的DSA875具备的信道功率与领道功率等高级测量功能,如图6,图7。
 
 
4)频谱仪可以同时测量多载频信号,观察信号频谱仪分布。
 
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
Pasternack推出新型军用射频电缆组件

Commercial Off-the-Shelf MIL-DTL-17 Cable Assemblies Feature Operating Frequencies of up to 12.4 GHz

Pickering Interfaces最新推出的4、6通道LXI微波多路复用 解决方案具有出色的射频特性和可重复性

2018年9月17日,于英国滨海克拉克顿镇,作为电子测试和验证领域模块化信号开关与仿真产品的领导者,英国Pickering公司于近日发布了新款四通道和六通道的LXI 50Ω微波多路复用开关,外形紧凑,高1U或2U,适合机柜安装。

罗德与施瓦茨发布分析带宽更大和射频性能更强的全新R&S FSW系列

罗德与施瓦茨推出的R&S FSW已是业界信号和频谱分析仪技术的领先者。现在,罗德与施瓦茨又全面增强了这个高端分析仪家族的性能。所有最高频率为26.5 GHz以及在此之上的R&S FSW型号现在都能配备2GHz内部分析带宽选件和800MHz带宽实时频谱分析选件。用户将欣赏到全新的外观设计、操作概念和用于自动记录远程控制指令序列的SCPI记录

13个关于射频电路的电源设计要点

电源线是EMI 出入电路的重要途径。通过电源线,外界的干扰可以传入内部电路,影响RF电路指标。为了减少电磁辐射和耦合,要求DC-DC模块的一次侧、二次侧、负载侧环路面积最小。电源电路不管形式有多复杂,其大电流环路都要尽可能小。电源线和地线总是要很近放置。

射频电路设计要点最全汇总

成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。

更多资讯
缩短波长是持续扩展光学微影技术的一种选择

现在正是再次探讨缩短波长并了解其优缺点的时候了。我们不知道13.5nm和1nm之间的最佳选择,所以我将这种新技术选项称为Blue-X——其波长大约介于深蓝极紫外光(EUV)微影和X射线之间。

3D结构光最全科普文章

HUAWEI Mate 20 Pro采用2400万前置摄像头,拥有3D结构光设计,3D智能美颜,自拍清晰自然;同时支持3D人脸解锁,带来毫秒级解锁体验。

光学频率梳为什么是重大突破?

光学频率梳是继超短脉冲激光问世之后激光技术领域的又一重大突破。光学频率梳由“锁模激光器”产生,是一种超短脉冲(飞秒1e-15s量级)的新型激光光源。飞秒激光脉冲是通过锁定飞秒激光器内所有能够振荡的激光纵模的相位而形成的周期性脉冲。

这种振荡电路只能用32.768KHZ 的晶体?

振荡电路用于实时时钟RTC,对于这种振荡电路只能用32.768KHZ 的晶体,晶体被连接在OSC3 与OSC4 之间而且为了获得稳定的频率必须外加两个带外部电阻的电容以构成振荡电路。

英国比克科技发布快速射频信号合成器AS108和网络分析仪标准检测件TA43x

英国比克科技(Pico Technology)于2018年9月25日在慕尼黑印度电子展和欧洲微波展同时发布两款射频新产品:快速射频信号合成器AS108和矢量网络分析仪标准检测件TA430和TA431。

Moore8直播课堂