射频微波电路简史

2018-06-13 16:57:31 来源:射频百花潭
标签:

 

1  引言

上世纪六十年代,特别是到了七十年代,由于微波半导体电路的飞速发展,微波在无线电技术领域中占有越来越重要的地位。目前,它已广泛地应用于微波中继通信、卫星通信、雷达、制导、电子测量仪器及各种飞行器的电子设备中,因此从事无线电和电子技术的理论和工程技术人员在科研和生产实际中,将大量接触和使用各种微波电子线路。

 

 

2  微波电路的产生

一直以来,“微波电路”就是“波导电路”的同义词,早在上世纪三十年代初期,人们就认识到对于微波频率来说,波导是一种很有用的传输结构,当然,这些应当提及贝尔实验室的Southworth等人的工作。研究者们很早就发现经过适当修改后的一小节波导,可以作为辐射器或电抗原件来使用。Southworth在一篇早起论文中就曾谈到谐振腔和喇叭天线。现代波导电路发展过程中,一开始就致力于使微波功率能从微波源有效地传送到波导传输线,并能在接收端有效地回收,这就对相应的发射机原件和接收机原件提出了更高的要求。因此,它导致了行波检测器、波长计、终端负载等元件的出现。然而,当年所用的微波技术水平是很落后的,当时的微波实验常常利用光学试验台进行,国际无线电工程(IRE)会刊在其五十周年纪念专集中发表了一篇回顾微波技术发展历史的文章,其中就有几幅当年所用设备的照片。

 

 

微波技术的发展应用,构成了微波电路的基础。从最初发现的不连续性的多次反射原理和相应的腔体谐振原理,到人们利用这些原理使微波功率源与波导匹配,再到用来使波导与接收机匹配(如晶体检波器),并且利用这些器件,使得某一频率的信号通过电路。

 

 

微波电路的基本特点之一是通过波导内部的螺钉、膜片(以致压缩尺寸)凭经验对其特性进行调整或调谐。起初,这仅是一种试凑方法,后来发展成所谓“波导管工程”。在很长时间内,它也是微波工程的一种最常用方法。

 

3  微波电路的现状

微波电路开始于二十世纪四十年代应用的立体微波电路,它是由波导传输线、波导元件、谐振腔和微波电子管组成的。到了二十世纪六十年代,便出现了以半导体器件以及薄膜淀积技术、光刻技术见长的新一代微波集成电路。由于具有体积小,重量轻,使用方便等优点,使得它在武器、航空航天以及卫星等方面得到充分的利用。

 

 

第二次世界大战期间,在微波电路中经常采用两种基本传输,即波导和TEM模同轴线。波导的特点是功率高、损耗小。后一特点导致了高Q谐振腔的出现。同轴线则由于不存在色散效应,具备固有的宽带特性。此外,阻抗的概念也能在同轴线中方便的解释,从而简化了元件的设计过程。这两种传输结构发展成为重要的微波电路元件,两者配合使用,可以达到意想不到的效果。

 

 

1951年,Barrett和Barnes提出的这种结构,即在微波电路中采用带状线传输结构,形式和今天所用的一样,由两片外侧敷有金属的介质板夹一根薄条状导体组成。其平面图如图3-1。早期的带状工艺,用的是刮刀和胶水,将薄带导体切下并粘结到介质板上。随着敷铜层压板的出现,带状线发展成为一项性能可以预先计算的精密工艺。带状线传输结构最重要的特点,是其特性阻抗受中心条带导体的宽度控制。带状线电路结构的二位特性使得它能实现许多元件的互连而不破坏外导体的屏蔽层,这也给输入输出位置带来很大的灵活性。由于两根条带导体紧靠时,存在固有的耦合特性,因此带状线在平行线耦合器中应用非常方便 。

 

自1974年,美国的Plessey公司用GaAs FET作为有源器件,GaAs半绝缘衬底作为载体,研制成功世界上第一块MMIC放大器以来,在军事应用(包括智能武器、雷达、通信和电子战等方面)的推动下,MMIC的发展十分迅速。正是由于GaAs技术的问世与GaAs材料的特性而促成了由微波集成电路向单片微波集成电路(MMIC)的过渡。与第二代的微波混合电路HMIC 相比较,MMIC的体积更小、寿命更长、可靠性高、噪声低、功耗小、工作的极限频率更高等优点,因此,受到广泛的重视。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
澳大利亚因安全问题将华为排除5G招标?看看华为怎么回应

此前澳大利亚政府准备宣布大规模部署5G移动通信基础设施,不过根据澳大利亚当地媒体报道称,最近该国安全机构已经建议不要将华为纳入招标对象范围,因为考虑到涉及国家安全的问题,这一话题不断升温。

5G国际标准是来了,之后会有怎样的变化产生?

当地时间2018年6月13日20:18(北京时间2018年6月14日11:18),3GPP全会(TSG#80)批准了第五代移动通信技术标准(5G NR)独立组网功能冻结。

恩智浦推出适用于5G网络的全新高功率射频产品

恩智浦半导体(纳斯达克代码:NXPI)扩展其丰富的GaN和硅横向扩散金属氧化物半导体(Si-LDMOS)蜂窝基础设施产品组合,推动创新,以紧凑的封装提供行业领先的性能,助力下一代5G蜂窝网络发展。

一文读懂28GHz 5G通信频段射频前端模块
一文读懂28GHz 5G通信频段射频前端模块

随着5G毫米波预期即将进入商用,行业内关键公司的研发正在顺利推进,已经完成定制组件指标划定、设计和验证。实现未来毫米波5G系统所需的基本组件是射频前端模块(FEM)。该模块包括发射机的最终放大级以及接收机中最前端的放大级以及发射/接收开关(Tx/Rx)以支持时分双工(TDD)。

中兴有救了,与美国商务部达成了什么和解?

美国商务部长罗斯7日宣布与中国中兴通讯公司达成新和解协议。

更多资讯
这款技术竟可以让手机随意折叠?天津大学柔性射频滤波器了解一下

记者近日从天津大学获悉,该校精密测试技术及仪器国家重点实验室庞慰团队在柔性电子设备实现高速无线通讯能力方面取得突破性进展,成功开发出柔性射频滤波器,可直接应用于柔性电子无线射频通讯。未来有望让智能手机真正实现“能屈能伸”,随意折叠。该研究成果被最新一期国际权威期刊《SMALL》选为封面文章推荐发表。

大联大世平集团推出基于TI产品的短距离雷达参考设计

2018年6月14日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下世平推出基于德州仪器(TI)产品的短距离雷达参考设计。

射频微波电路简史
射频微波电路简史

上世纪六十年代,特别是到了七十年代,由于微波半导体电路的飞速发展,微波在无线电技术领域中占有越来越重要的地位。目前,它已广泛地应用于微波中继通信、卫星通信、雷达、制导、电子测量仪器及各种飞行器的电子设备中,因此从事无线电和电子技术的理论和工程技术人员在科研和生产实际中,将大量接触和使用各种微波电子线路。

激光技术凭啥称为“最快的刀”?

激光技术发展带动制造工艺革新,中国正阔步进入“光加工”时代 激光被誉为“最快的刀、最准的尺、最亮的光”,媲美核能、计算机和半导体。

激光切割的原理及分类汇总
激光切割的原理及分类汇总

激光切割是由激光器所发出的水平激光束经45°全反射镜变为垂直向下的激光束,后经透镜聚焦,在焦点处聚成一极小的光斑,光斑照射在材料上时,使材料很快被加热至汽化温度。

电路方案