I/Q信号这么重要!你竟然不知道?

2018-08-22 09:16:28 来源:电子工程专辑
标签:

当前的数字射频芯片,无一例外的用到了I/Q信号,就算是RFID芯片,内部也用到了I/Q信号,然而绝大部分射频人员,对于IQ的了解除了名字之外,基本上一无所知。I/Q信号一般是模拟的。也有数字的比如方波。基带内处理的一般是数字信号,在出口处都要进行D/A(数—>模)转换,每个基带的结构图里都有,可以仔细看。

 

网上有大量关于IQ信号的资料,但都是公式一大堆,什么四相图,八相图之类的,最后还是不明白,除了知道这两个名次解释:


I:in-phase  表示同相
Q:quadrature 表示正交,与I相位差90度。

 

国内的教学首先是老师根本不懂实践,之后只能按照书本讲公式,其实老师自己什么都不懂,很多人都说老师只懂理论,若老师真的懂理论,那教育就不是现在这个局面了,实际上老师不仅仅不懂实践,更不懂理论,只是照本宣科吧了。

 

现在来解释I Q信号的来源:

 

最早通讯是模拟通讯,假设载波为cos(a),信号为cos(b),那么通过相成频谱搬移,就得到了

 

 

这样在a载波下产生了两个信号,a+b和a-b,而对于传输来说,其实只需要一个信号即可,也就是说两者选择一个即可,另外一个没用,需要滤掉。但实际上滤波器是不理想的,很难完全滤掉另外一个,所以因为另外一个频带的存在,浪费了很多频带资源。

 

进入数字时代后,在某一个时刻传输的只有一个信号频率,比如0,假设为900MHz,1假设为901MHz,一直这两个频率在变化而已,并且不可能同时出现。这个不同于模拟通讯信号,比如电视机,信号的频带就是6.5MHz。还有一个严重的问题,就是信号频带资源越来越宝贵,不能再像模拟一样这么简单的载波与信号相乘,导致双边带信号。

 

大家最希望得到的,就是输入a信号和b信号,得到单一的a+b或者a-b即可。基于此目的,我们就把这个公式展开:

 

 

这个公式清楚的表明,只要把载波a和信号b相乘,之后他们各自都移相90度相乘,之后相加,就能得到a-b的信号了。这个在数字通讯,当前的半导体工艺完全可以做到:


1:数字通讯,单一时间只有一个频点,所以可以移相90度。
2:相加器、相乘器技术很容易实现。

 

如下图:手机GSM射频部分

 


接下来就很好办了,大家知道:I 就是cos(b),Q 就是sin(b)

 

对这两个信号进行组合:

 


这个就是IQ信号的四相调制了。

 

之后为了编码更多的,就在这个里面折腾了,下面的就大家自己看书了。

 

注意,通过上面分析,大家知道IQ信号应该是正弦波模拟信号,手机上的频率是66KHz,大家在布线的时候一定要保证IQ信号不被干扰,毕竟是模拟信号,不然相乘相加之后就有很多杂波产生了,这个就是杂散了。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
植入芯片真的靠谱吗?
植入芯片真的靠谱吗?

这是里程碑式的一天!未来会有更多的人在身体里植入芯片,以便更好地了解自己。”前不久欢聚时代联合创始人李学凌在朋友圈晒出自己身体植入的小芯片,引起网友围观,有人表示这太“科幻”了,也有人迅速“打脸”,指出这实际上只是雅培的一款敷贴式血糖仪,不可能测量“各种东西”。

I/Q信号近乎无处不在,到底有何神奇?

当前的数字射频芯片,无一例外的用到了I/Q信号,就算是RFID芯片,内部也用到了I/Q信号,然而绝大部分射频人员,对于IQ的了解除了名字之外,基本上一无所知。I/Q信号一般是模拟的。也有数字的比如方波。基带内处理的一般是数字信号,在出口处都要进行D/A(数—>模)转换,每个基带的结构图里都有,可以仔细看。

盘点手机RFID智能卡主流解决方案

近年来,通信行业的市场环境发生了巨大的变化,通信业务的互联网化趋势越来越明显,电信网络日益通道化、电信服务日益虚拟化,没有网络的公司通过使用网络通道就可以提供越来越多的通信服务,传统电信运营商单纯依赖提供简单的语音和数据通信获得赢利的模式越来越难以持续,纷纷向“信息服务”转型。

为了免除刷卡烦恼,这家公司要给员工植入NFC芯片

据国外媒体报道,美国威斯康辛州一家名叫Three Square的公司最近向员工提供了一种可植入式芯片服务,而员工可以通过这枚植入的芯片来实现门禁、购买零食、登录办公电脑以及使用复印机办公设备等功能。

新型RFID芯片:想黑我,没门!
新型RFID芯片:想黑我,没门!

一支来自麻省理工(MIT)和德州仪器(TI)的研究团队,已经打造出了一款新型射频识别(RFID)芯片,特点是不会被黑。其声称采取了特殊的措施来防范两种类型的攻击,而它们也是困扰现代RFID芯片(部署了PIN码的信用卡)的头号问题——即“旁路”(side-channel)和“电压毛刺”(power glitch)攻击。

更多资讯
锦绣微波发布新系列柔性波导模型,提供低至1.05:1的VSWR

New Twistable and Seamless Flexible Waveguide Models Cover 5.85 GHz to 50 GHz Frequency

半导体激光器发光原理及工作原理

半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。它具有体积小、寿命长的特点,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。

美景微波提供了40 GHz的同轴射频探针扩展线。

New RF Probe Models Support Higher Data Rates in Both GS and GSG Configurations

高功率半导体激光器在焊接中的应用

随着激光加工技术的发展,高功率、高亮度半导体激光器逐步崭露头脚,与光纤激光器、超快激光器、碟片激光器等一同被视作新一代激光光源,使得许多重要的应用成为可能。

工业生产常用的激光器:气体激光器、固体激光器、半导体激光器

目前,光纤激光器在工业加工领域扮演了极为关键的角色,特别是在高功率激光加工中。不同类型激光器,在特性上存在差异,因而在不同行业领域中适用性各不相同。那么我们就来区分一下激光的种类和应用吧。

Moore8直播课堂
电路方案