机载雷达简史:向雷达先驱者们致敬

2018-09-17 16:52:46 来源:EEFOCUS
标签:

从地基起步

蝙蝠,虽然像人一样拥有双眼,但它看起东西来,用到的却不是眼睛。蝙蝠从鼻子里发出的超声波在传输过程中遇到物体后会立刻反弹,根据声波发射和回波接收之间的时间差,蝙蝠就可以轻易地判断出物体的位置。这一工作原理与人类发明的雷达如出一辙。

从蝙蝠的生存技能来理解雷达,无疑是一个很有意思的捷径。不过把雷达的发明说成是仿生学的结果,却是一种牵强附会。如果时间倒退到七十多年前,英国的雷达先驱者们听到这种说法,也一定会笑着解释说,“不,不,是轰炸机让我们发明了雷达,而不是蝙蝠。”

 

1935年,英国科学家罗伯特.沃森.瓦特爵士(发明蒸汽机的那位瓦特先生的后代),显然继承了其祖先的优秀基因,成为世界上第一部雷达的研制者。当时正值第二次世界大战前。那时的轰炸机在战争中已经扮演了重要的角色,为了发现入侵的轰炸机,最初只能利用光学(如探照灯)或声学的手段,显然,这种方法提供的预警时间太短,不能满足防空需要。为了缓解巨大的防空压力,英国人可谓绞尽脑汁。

 

 

1935年初,瓦特开发出一部能够接收电磁波的设备。当年6月,瓦特领导的团队赶制出了世界上的第一部雷达。多座高塔是这部雷达的最显著特征,高塔之间挂列着平行放置的发射天线,而接收天线则放置在另外的高塔上。7月,这部雷达探测到海上的飞机。1936年5月,英国空军决定在本土大规模部署这种雷达,称为“本土链”(Chain Home),到1937年4月,本土链雷达工作状态趋于稳定,能够探测到160千米以外的飞机;到了8月,已经有3个本土链雷达站部署完毕。而到了1939年初,投入使用的雷达站增加到20个,形成贯通英国南北的无线电波防线。

 

 

1939年,二战爆发。英德之间的不列颠空战成为雷达大显身手的舞台。本土链雷达网多次探测到德军的空袭,并为己方拦截机提供引导信息。也许,德国人并没有真正理解本土链的威力,因此自始至终都没有对那一个个看来莫名其妙的高塔进行轰炸或干扰。

 

雷达先驱者们的不幸

雷达在战争中展露头角,使得英国人也想把雷达装上飞机。在空战中,如果在晴朗的白天,飞行员一般都能比较顺利地发现敌机,但如果天气不好或者是在夜晚,发现目标就会变得困难。把雷达装上飞机就能帮助飞行员穿透迷雾和黑夜进行空中拦截作战——空中截击雷达(AI雷达)的概念就出现了。然而,以当时的技术水平,哪个工程师要是被军方派去开发AI雷达,绝对是一种不幸。先不说本土链雷达的巨大天线,仅仅是巨大的耗电量就是个难以解决的事儿了。那么,怎么样才能把雷达做得足够“迷你”够“环保”却又看得足够远呢?

 

雷达通过发射机产生一定振荡频率的电流,送至天线后通过电磁感应现象把电能变成电磁波辐射到空间;电磁波碰到物体后会向各个方向反射,其中一部分会返回雷达(称为后向散射),被天线接收并送至雷达接收机,在显示器上显示。如果我们能够提高发射机产生的功率,并且使得从天线辐射出去的电波能量在空间尽量集中,就能使得电波能够在更远的距离上触及目标。这正像我们在说话时,如果需要离自己很远的人也能听见,可以做两件事,要么扯起嗓子喊,要么拿一个喇叭。雷达提高探测距离的这两个基本办法,在专业上称为提高“功率孔径积”。

 

 

如何提高发射机的功率呢?可以对一定振荡频率(可以认为与雷达在空间辐射的电磁波的频率相同)的电流通过放大器放大,然后再送至天线。实际上这是发射机最主要的功用。但是,放大器的放大能力与电磁波的工作频率直接相关。频率越低,放大越容易。早期的雷达,其电磁波频率只能在300兆赫以下(对应的电磁波波长大于1米,称为米波),本土链雷达的工作频率只有11.5兆赫,波长26米。当然,如果器件水平只允许雷达工作在较低的频率,而雷达工作在较低频率上又没有什么坏处的话,那就让它工作在低频段上好了,但情况并没有那么简单。雷达电磁波的工作频率还直接影响到雷达把能量集中到空中去发射的能力,即天线性能。人们把雷达电波从天线辐射出来的能量在空间的分布用波瓣图来表示。雷达能量最集中的区域称为主瓣,其余的区域就叫副瓣,又叫旁瓣。雷达天线把能量集中到主瓣宽度内发射的能量和雷达向全方位同等辐射能量的比值,称为天线的增益。雷达能量在空间越集中,主瓣宽度(一般为几度以下)就越小,增益就越高。在天线尺寸一定的情况下,雷达波长越长,主瓣波束宽度越宽,增益越小;或者说,在雷达波长选定以后,为了获得尽量窄的波束宽度和尽量高的增益,应该尽量把天线个头做大。

 

如果要增大天线,飞机上的空间不允许;如果要提高电波频率和发射功率,器件水平又不允许,而且,早期的电子技术,无法直接在一个较高的频率上产生电流振荡,如果要让雷达工作频率提高,就只能采用一级一级的电路逐级提高工作频率,这无疑又会增加设备的数量、重量和体积。因此,早期的机载雷达发展面临严重的困难。

 

无心插柳的空海监视雷达

1936年,美国无线电公司开发出一种小型电子管,可产生波长1.5米,工作频率200兆赫的电磁波,这成为人们把雷达装上飞机的一根“救命稻草”。1937年8月,世界上第一部机载雷达试验机由英国科学家爱德华•鲍恩领导的研究小组研制成功,并把它安装在一架双发动机的“安森”飞机上,探索作为截击雷达的可能性,这架“安森”飞机便成为最早载有雷达的飞机。不过雷达的功率虽然只有区区100瓦,但却让飞行员们感到不安——他们认为,雷达可能引起火花并点燃油箱,而且,雷达的天线会妨碍飞机的机动飞行。

 

正式试飞开始以后,结果有些出乎意料。雷达在空中没有发现任何空中飞机,却把海面上的几艘船看得清清楚楚。于是瓦特又特地安排这架飞机做观察英军舰船的进一步实验,结果令人鼓舞。很快,机载雷达的研发重点就从空-空截击转向空-海监视。这种情况发生的原因是,舰船反射雷达回波的能力要比飞机反射回波的能力强几十倍以上。因此,在海情良好的情况下,机载雷达发现舰船的距离要比发现飞机的距离远得多。但当海情恶劣时,舰船回波容易受到海浪的干扰,雷达发现距离会大幅度下降。

 

1939年11月,第一种生产型机载空海监视雷达ASV-1开始试验,1940年初投入使用,装备英国空军海防总队的3个海上巡逻机中队,用以在北海跟踪护航舰队。1940年末,随着希特勒“海狮计划”的破产,纳粹空军对英国的空中威胁大大减弱,不过德军潜艇的活动却越发猖狂。到1941年春,德军潜艇已经击沉一百多艘盟军商船,极大破坏了英军物资保障体系。于是,英国开始围绕海上交通线大举开展反潜战,机载雷达成为盟军反潜的利器。它能在更远的距离上发现水面航行的潜艇,并引导飞机发起攻击。

 

小玩意儿的大玄机

1940年2月,英国科学家发明磁控管,第一次使得雷达工作频率从米波提高到分米波,从而使得雷达终于进入微波时代(雷达波长如果短至分米以下,则称为微波波段)。雷达工作在微波波段带来的好处是巨大的。由于频率提高、波长缩短,所以可以允许天线在做得比较小的情况下仍然有很强的方向性,另外磁控管也解决了雷达工作频率提高以后的功率放大难题,首次让雷达工作在分米波长上并产生高达1千瓦的功率。

 

在20世纪40年代之初,磁控管让机载雷达在经历了3年的徘徊和困难时期后有望解决在飞机上的适装性问题。同时在这一阶段,另一重要元件的发明——电子收发开关,使得雷达不再需要分置的两个天线,将用于接收和用于发射的天线合二为一。那么,雷达发展的早期,为什么发射和接收要用不同的天线呢?

 

雷达的首要功能是测距,通过测量发射电波和接收回波之间的时间差,并将其除以2后再乘上电波传输速度(光速),就得到目标距雷达的距离。大部分雷达采用脉冲方式工作,也就是雷达发射一段时间的电磁波(通常为数毫秒以内),然后歇一会儿(通常为几百毫秒以内),然后再发射,如此往复。雷达停止发射的时间段内,就在接收回波。由于从发射机送出的功率极大(地面雷达的功率可达兆瓦以上),而进入接收机的雷达回波通常非常微弱(最多为发射机送出的功率的几百亿分之一),为接收到微弱的回波,接收机要求非常灵敏。在电子收发开关没有发明之前,为使发射机的能量不至于进入接收机并烧坏接收机,只能把收发天线以及相应收发通道分开。有了电子开关之后,在用一个天线既做发射又做接收的情况下,发射时用于保证巨大的雷达电波能量仅仅送入天线而不送往接收机;接收时则保证可以让微弱的雷达电波能量送入接收机而不是送往发射机,使接收到的能量不至于被发射机送出的能量所淹没。

 

不过,对雷达来说,还需要在收发开关的基础上,再配置接收机保护装置。这是因为,天线和传送电流至天线的通道之间的电路不能做到绝对匹配,因此,天线不能完全吸收由发射机送过来的电流能量,其中的一小部分会被天线反射回来,从而会造成一部分发射机能量损耗———就像光线在穿透一块玻璃时,总有一部分光线会从玻璃上反射回来一样。由于双工器完全根据能量的流向执行其开关功能,因此,从天线反射回的这部分能量会“欺骗”双工器,仍然会进入接收机。虽然这个能量很少,但仍然比雷达的回波强很多,足以烧坏接收机。

 

 

  

雷达天线不再分置,减少了飞机上的空间占用,使机载雷达更加紧凑,设备在机身上的安置更加集中。随后,也是在这个十年间,雷达天线形式开始由钉子状的单个或多个天线振子、鱼骨状的八木天线阵列向锅状的抛物面反射天线进化。抛物面天线的增益是八木天线的十倍以上,也就是抛物面天线的波束宽度普遍要比八木天线的窄很多,从早期的十几度甚至几十度演变到当时的几度,这样,功率相对小一些的发射机,也能让电波传得很远。

 

磁控管的发明,收发天线的共用,以及天线形式的演变,使雷达逐渐变得更适合在飞机上安装,到上世纪40年代中期,雷达已经具备了机载应用的条件。

 

擦亮飞机上的神眼

雷达有两大基本功——测距和测角。

 

因为电磁波的传播速度是一定的(光速),测距就是测时间,或者说,时间就是距离。雷达所能测量的时间越短,则雷达距离的测量也就越准。在雷达里,能够测量的最短时间就是每次发射电波的持续时间,即脉冲宽度。因此,减少雷达发射能量的持续时间,对提高距离测量的精度有好处。

 

雷达对角度的测量,则要复杂一些。由于雷达的波束有一定宽度,为了覆盖全方位,雷达波束就需要旋转起来,正像人的眼睛有一定的视角范围,为了看清身体两侧和身后的物体,就必须转身一样。

 

雷达测量目标的角度,就是通过记下雷达天线当前旋转所处的位置,如果在这个位置上有一个很强的回波,那么,这个回波所对应的方向就是雷达天线的当前指向角。但是,如果雷达波束很宽,而两个目标在方位上又靠得很近,一个波束就可以把这两个目标“罩住”,那么,雷达对这两个目标就无法区分了。如果降低雷达的波束宽度,使得波束在两个旋转位置上才能分别照射到这两个目标,这样就会有两个方向了。因此,测角要测得准,首先要使波束窄一些。后来,人们想到了在测量方法上也做一些改进。通过先后改变波束位置(在这两个位置上都能照射到目标),并且使同一个目标在这两个波束位置上的回波强度都一样,那么,由于波束位置是事先知道的,就可以判断出目标的方向是在这两个波束位置的角平分线上。如果目标不是位于两个波束位置的正中,那么两次回波在强度上就有所不同。由于这种测角方法中,需要把波束先后放到两个相邻的位置上,而雷达天线通过扫描在空域中搜索目标时正达到这样的效果,所以称为“顺序扫描”。当需要对目标的高度也进行测量时,道理是一样的,只不过是把波束要先后放到两个相邻的高低角上。如果在测量方位的同时,需要测量高度,那么波束既要在方位上变化,也要在高度方向上变化,此时从雷达射出的波束就要在空中“画圈”,波束的运动轨迹就像一个圆锥,所以这种测角方法称为“圆锥扫描”。

 

通过顺序扫描或圆锥扫描的方法,雷达对角度的测量可以达到波束宽度的几分之一。不过,顺序扫描或圆锥扫描虽然提高了测角的准确度,但是由于这种测角方法需要利用波束先后两次照射到目标后的回波,两次回波的强度可能会变化很大,难以使两次的回波强度相同,所以,测角效果有时候并不是很理想。我们都有这样的生活经验,在明媚的阳光之下,垂杨柳边,一片平静的湖面,在微风的吹拂下,波光摇曳。这些粼粼的波光有时候会让我们觉得晃眼,有时候却又很温柔地进入我们的视线。这种情况实际上表示,阳光照射到湖面以后,由于微风吹动了湖水,水面的姿态在变化和起伏,从而使水波反射进入人眼的阳光强度发生了变化。目标对雷达的反射有如此理。在雷达的波束先后两次照射到目标的时间间隔内,由于目标在此期间的姿态或其它物理特性的变化,雷达两次收到的回波的强度会有很大的不同,专业上叫作“目标闪烁”或“目标起伏”,这对雷达确定目标的位置是非常不利的。所以,雷达在确定目标的位置时,要想测得准一些,总是希望克服目标闪烁的影响。20世纪50年代,雷达工程师想到了单脉冲技术,也就是让天线“同时”产生两个波束照射目标而不是“先后”利用两个波束照射目标,以克服先后两个波束照射的间隔中目标回波强度的变化;而且理论上,这种方法只需要两个波束在一次照射时间内(也就是1个脉冲,故称为单脉冲)返回的能量就能把角度测出来,而测量的准确度却可以提高1个数量级(达到波束宽度的1/10至1/20)。

 

脉冲压缩,鱼与熊掌可以兼得

前面说过,为了提高雷达的距离分辨力,以及测距的准确性,希望脉冲宽度越窄越好。另一方面,以脉冲方式工作的雷达,脉冲越宽,也就是每次发射能量的持续时间越长,里面包含的能量也就越多,回波也就可能蕴含更多的能量,这对于提高雷达的发现距离是有利的,所以,雷达脉冲又是宽一些好。那么,如何解决提高发射能量和提高距离分辨力的矛盾呢?答案就是脉冲压缩。这是继20世纪50年代出现的单脉冲技术后,机载雷达发展史上的又一次重大技术突破。

 

 

脉冲压缩技术就是在发射脉冲时,脉冲宽度很宽,在接收时,则把它压窄。脉冲压窄意味着频率变高,而频率越高,通过接收机的速度就越快。脉冲的接收过程相当于把宽脉冲分成很多段,如果不作脉冲压缩,那么这些段是先后依次通过接收机。如果作脉冲压缩,就是在第一段通过的同时,让第二段赶上第一段,第二段和第一段就同时通过了。然后让第三段赶上第二段,第四段赶上第三段……,所有的回波段就全赶在同一个时间段通过接收机了。因为要让后面的段赶上前面的段,所以,后面段的信号频率就要依次增高,越靠后面的段频率越快。

 

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
痛并快乐着的自动驾驶行业,硬件厂商该如何自处?

自动驾驶是汽车产业颠覆性的技术,是汽车新四化(智能化、电气化、网联化和共享化)中前三项的高效融合,但所有这些创新都是基于强大的半导体硬件。

射频隐身技术未来的研究方向在哪里?

机载用频设备的增加和截获接收技术的发展,导致航空器在电子对抗中的生存能力受到严重威胁。该文阐述了射频隐身的概念和基本原理,概括射频隐身技术的研究现状及主要矛盾。

安森美半导体为自动驾驶和汽车安全提供完整解决方案

安森美半导体提供全面的产品和完整的方案支持主动安全和自动驾驶,包括图像传感器、超声波传感器、雷达、光达(LiDAR)、电源管理和先进的汽车前大灯和尾灯照明等,用于视觉、前视先进驾驶辅助系统(ADAS)、车道偏离警告、自适应巡航控制、乘员检测、电子车镜、驾驶员监控和手势识别等辅助驾驶应用。

雷达、传感器、控制器等半导体元器件如何助力自动驾驶汽车高速发展?
雷达、传感器、控制器等半导体元器件如何助力自动驾驶汽车高速发展?

其中,电子元器件主要任务是搭建自动驾驶的硬件平台,收集道路交通数据,最终帮助软件算法完成驾驶决策。可以说,电子元器件是自动驾驶实现的基础。

超声波测厚仪测量误差来源都有哪些?

在实际检测工作中,经常碰到测厚仪示值与设计值(或预期值)相比,明显偏大或偏小,原因分析如下:

更多资讯
锦绣微波发布新系列柔性波导模型,提供低至1.05:1的VSWR

New Twistable and Seamless Flexible Waveguide Models Cover 5.85 GHz to 50 GHz Frequency

半导体激光器发光原理及工作原理

半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。它具有体积小、寿命长的特点,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。

美景微波提供了40 GHz的同轴射频探针扩展线。

New RF Probe Models Support Higher Data Rates in Both GS and GSG Configurations

高功率半导体激光器在焊接中的应用

随着激光加工技术的发展,高功率、高亮度半导体激光器逐步崭露头脚,与光纤激光器、超快激光器、碟片激光器等一同被视作新一代激光光源,使得许多重要的应用成为可能。

工业生产常用的激光器:气体激光器、固体激光器、半导体激光器

目前,光纤激光器在工业加工领域扮演了极为关键的角色,特别是在高功率激光加工中。不同类型激光器,在特性上存在差异,因而在不同行业领域中适用性各不相同。那么我们就来区分一下激光的种类和应用吧。

Moore8直播课堂
电路方案