无线充电运用了一种新型的能量传输技术——无线供电技术。该技术使充电器摆脱了线路的限制,实现电器和电源完全分离。在安全性,灵活性等方面显示出比传统充电器更好的优势。在如今科学技术飞速发展的今天,无线充电显示出了广阔的发展前景。
 
目前无线充电的技术已经开始在各领域中探索运用。由于无线传输的距离越远,设备的耗能就越高。要实现远距离大功率的无线电磁转换,设备的耗能较高。所以, 实现无线充电的高效率能量传输,是无线充电器普及的首要问题。另一方面要解决的问题是建立统一的标准,使不同型号的无线充电器与不同的电子产品之间能匹配,从而实现无线充电。 
 
无线充电已从梦想成为现实,从概念变成商用产品。无线充电产品实例:
 
图: 手机笔记本无线充电器 
 
图:新能源汽车无线充电
 
图: 电动牙刷无线充电
 
 
无线供电特点
优点:
(1)便捷性:非接触式,一对多充电与一般充电器相比,减少了插拔的麻烦,同时亦避免了接口不适用,接触不良等现象,老年人也能很方便地使用。一台充电器可以对多个负载充电,一个家庭购买一台充电器就可以满足全家人使用。
(2)通用性:应用范围广只要使用同一种无线充电标准,无论哪家厂商的哪款设备均可进行无线充电。
(3)新颖性,用户体验好
(4)具有通用标准 
 
 
主流的无线充电标准有:Qi 标准、PMA 标准、A4WP 标准。
 
Qi 标准:Qi 标准是全球首个推动无线充电技术的标准化组织——无线充电联盟(WPC,2008 年成立)推出的无线充电标准,其采用了目前最为主流的电磁感应技术,具备兼容性以及通用性两大特点。只要是拥有 Qi 标识的产品,都可以用 Qi 无线充电器充电。2017 年 2 月,苹果加入 WPC。
 
PMA 标准:PMA 联盟致力于为符合 IEEE 协会标准的手机和电子设备,打造无线供电标准,在无线充电领域中具有领导地位。PMA 也是采用电磁感应原理实现无线充电。目前已经有 AT&T、Google 和星巴克三家公司加盟了 PMA 联盟。
 
A4WP:Alliance for Wireless Power 标准,2012 年推出,目标是为包括便携式电子产品和电动汽车等在内的电子产品无线充电设备设立技术标准和行业对话机制。A4WP 采用电磁共振原理来实现无线充电。
缺点
(1)工作距离短
目前的无线充电技术大多在短距离范围内的近磁场对电子设备进行无线充电。因为无线电能传输的距离越远,功率的耗损也就会越大,能量传输效率就会越低,且会导致设备的耗能较高。
 
(2)转换效率低,速度慢
无线充电技术虽然简单便捷,但是其硬伤在于缓慢的充电速度和充电效率。
 
(3)功耗较高,更加费电
随着无线充电设备的距离和功率的增大,无用功的耗损也就会越大。
 
(4)成本较高,维护消耗大,不符合标准会有安全隐患危险。
 
无线供电原理及实现方法
无线充电利用电磁波感应原理进行充电,原理类似于变压器。在发送和接收端各有一个线圈,发送端线圈连接有线电源产生电磁信号,接收端线圈感应发送端的电磁信号从而产生电流。
 
2007 年 6 月麻省理工学院以 Marin Soljacic 为首的研究团队首次演示了利用电磁感应原理的灯泡无线供电技术,他们可以在一米距离内无线给 60 瓦的灯泡提供电力,电能传输效率高达 75%。
 
研究者由此设想电源可以在这范围内为电池进行无线充电,进而推想只需要安装一个电源,即可为整个屋里的用电器供电。传输线圈的工作频率在兆赫兹范围,接收线圈在非辐射磁场内部发生谐振,以相同的频率振荡,然后有效的通过磁感应进行电能传输。 
 
图:无线充电原理 
 
实现无线充电技术主要通过四种方式:电磁感应式、磁场共振式、无线电波式、电场耦合式。
 
 
1、电磁感应式
1890 年,物理学家兼电气工程师尼古拉·特斯拉就已经做了无线输电试验,实现了交流发电。
 
迈克尔·法拉第发现电磁感应原理,电流通过线圈会产生磁场,其他未通电的线圈靠近磁场就会产生电流。 
 
图:电磁感应式原理 
 
电磁感应式充电:初级线圈一定频率的交流电,通过电磁感应在次级线圈钟产生一定的电流,从而将能量从传输端转移到接收端。目前最为常见的充电垫解决方案就采用了电磁感应,事实上,电磁感应解决方案在技术实现上并无太多神秘感,中国本土的比亚迪公司,早在 2005 年 12 月申请的非接触感应式充电器专利,就使用了电磁感应技术。 
 
电磁感应式是当前最成熟、最普遍的无线充电技术,原理有些类似于变压器。 
 
图:电动汽车无线充电原理
 
2、磁场共振式
 
图:磁场共振方式原理 
 
磁场共振充电由能量发送装置,和能量接收装置组成,当两个装置调整到相同频率,或者说在一个特定的频率上共振,它们就可以交换彼此的能量,是目前正在研究的一种技术,由麻省理工学院(MIT)物理教授 Marin Soljacic 带领的研究团队利用该技术点亮了两米外的一盏 60 瓦灯泡。该实验中使用的线圈直径达到 50cm,还无法实现商用化,如果要缩小线圈尺寸,接收功率自然也会下降。
 
相比电磁感应方式,利用共振可延长传输距离。磁共振方式不同于电磁感应方式,无需使线圈间的位置完全吻合。
 

 

应用:意法半导体与 WiTricity 合作开发谐振无线电能传输芯片
 
意法半导体(简称 ST)与超长距离无线电能传输技术先驱 WiTricity 公司,宣布合作开发电磁谐振式无线电能传输半导体解决方案。
 
此方案支持消费电子和物联网设备快速无线充电,并支持多个设备同时充电。这个电磁谐振无线电能传输芯片被称为“无线充电 2.0”,与现有无线充电技术不同的是,这款芯片能够给金属外壳的智能手机、平板电脑和智能手表高效充电。 
 
 
3、无线电波式
无线电波式充电:这是发展较为成熟的技术,类似于早期使用的矿石收音机,主要有微波发射装置和微波接收装置组成,可以捕捉到从墙壁弹回的无线电波能量,在随负载作出调整的同时保持稳定的直流电压。此种方式只需一个安装在墙身插头的发送器,以及可以安装在任何低电压产品的“蚊型”接收器。
 
整个传输系统包括微波源、发射天线、接收天线 3 部分;微波源内有磁控管,能控制源在 2. 45 GHz 频段输出一定的功率 
 
图:无线电波充电示意图 
 
应用:AirVolt 无线充电器
AirVolt 是一款利用无线电波给移动设备进行充电的无线充电器。和同类型产品一样,它的效率要比有线充电低一些。AirVolt 充电头通电后可以将电能转化为电磁波,接收器获取后会将电磁波又转化为电能为手机充电。当电量充满到 80%时就会自动停止充电, 低于 20%时又会自动充电, 既保证了手机最佳电量又不会导致过度充电, 增加了电池使用寿命。 
 
 
AirVolt 由 TechNovator 公司开发, 需要充电时只要将接收器插进手机, 再将充电头插上插座就能进行远程无线充电。最佳充电距离是 9 米之内,而最远距离可达 12 米,躲到屋里任何一个角落都能充电!接收器和充电头体积都足够小,充电速度就比普通充电器慢一些。有 Lightning 或 Micro usb 两种接口选择, 满足不同需要。
 
4、电场耦合式
电场耦合式充电原理:利用通过沿垂直方向耦合两组非对称偶极子而产生的感应电场来传输电力。一般充电模块是由 2 个非对称偶极子按垂直方向排列而成的,这组偶极子各由供电部分和接收部分的活性炭电极和接地电极组成。无线供电模块就是通过这 2 个非对称偶极子的电场耦合而产生的感应电场来供电的。
 
电场耦合方式的特点大致有三:
①充电时可实现位置自由
②电极薄
③电极部的温度不会上升。因此不仅能够提供便利性,而且还可降低系统成本。目前已试制完成为平板终端及电子书等便携终端进行无线供电的供电台。
 

 

现有解决方案分析
国外研发无线充电技术(包括芯片 / 方案 / 发射接收器件)的企业主要包括了 IDT、TI、Freescale、高通、博通、NXP、Fulton、Energous、Delphi、松下、东芝、富士通等。
 
国内则有中惠创智、新页、中兴、劲芯微、美嗒嗒、微鹅、斯普奥汀、华润矽科、新捷、伏达、以及台湾凌阳等。
 
在无线充电发射器上放置不同的接收器,接收器可为不同的装置从小电力的耳机到大功率的笔记型计算机,因此一个成熟的解决方案首先应该要能检测到对应不同的目标物;而每个接收装置的电力需求会有所不同,这时发射器需要能自动调节功率输出进行供电。
 
一般无线充电步骤分为:检测、通信、供电三个阶段。
(1) 检测阶段:识别可供电设备及异物(FOD)
当接收器放置在发射器工作范围内,发射器检测是否是一个接收器靠近 
 
 
 
(2) 通讯阶段:进行身份认证
发射器发送数据包,并且为接收器供电启动接收器,之后接收器回复响应数据完成身份的认证 
 
 
 
(3) 充电阶段:进行电能传输
在身份认证后,发射器根据接收器的设备类型,选择相应的功率等参数,为接收器充电 
 
 
 
以 Qi 标准为例,整体流程如下: 
 
图:Qi 标准通讯流程 
 
现今无线充电系统都采用共振的方式进行设计,在架构上都大至相同有下列这些构造:发射器内有直流电源输入 、频率产生装置 、切换电力的开关 、发射的线圈与电容谐振组合 ;接收器内有接收的线圈与电容谐振组合、整流器;滤波与稳压器 ;直流电源输出。
 
1、IDT 无线 IC 方案
 
图:IDT 无线发射与接收 IC 
 
IDT 公司的无线充电技术解决方案具备高集成度,提供单芯片 SOC 解决方案,支持 QI-LOGOWPC 认证,并且兼容 POWERMATE 模式;具有加密通讯(FSK、ASK 实现),异物检测模式功能。IDT 目前是英特尔整个平台无线充电技术唯一的合作伙伴。现已有多家厂商使用 IDT 无线充电解决方案。
 
IDT 的无线充放电 IC 在无线充电效率在 15W 时最高可达 87%,提高了系统的热性能,可以媲美传统的有线充电架构。其内部处理器基于 32 位 ARM Cortex-M0 架构,通过 I2C 通讯控制,并且提供了扩展的数字 IO 引脚以及相关软件库。
 
图 :IDT 无线充电解决方案原理 
 

 

成本评估参考: 
芯片 价格 ()P9242−RNDGI(15WTransmitter) 4.4 
P9221-RAHGI8 (15W Receiver) 3.2P9038−RNDGI(5WTransmitter) 3.9 
 
P9025AC-RNBGI (5W Receiver) $ 3.2
 
恩智浦 MW 系列无线充电 IC 方案
恩智浦提供的解决方案涵盖 5 W 的低功耗产品到 15 W 的中等功耗产品,适用于消费电子、工业控制和汽车电子市场,包含发送器 / 接收器控制器 IC、相关软件、评估板和参考设计。该软件包含实现核心充电功能所需的全部资源,还提供了用于定制和增加功能的 API。 
 
图:恩智浦 MW 系列无线充电 IC 
 
成本评估参考: 
 
 
 
2、TI (BQ 系列)无线充电方案
 
 
TI 是最早量产无线充电方案公司。其中 10W 无线充电解决方案中,从发射端输入到接收端输出效率可以达到 84%。 
 
接收器功能框图: 
 
 
发射器功能框图: 
 
 

 

此外,TI 推出的第三代无线电接收器芯片 bq51020 和 bq51021,以及世界第一个达到 WPC1.1 和 PMA 标准的双模型集成电路 bq51221,这些接收器解决方案已达到 96%的超高效率。从而完全消除了在 5W 的条件下,应用于智能手机及其他便携式设备中全面运转的散热问题。
 
成本评估参考:
发送器:
 
 
接收器: 
 
 
4、东芝无线 IC 方案
东芝公司旗下存储与电子元器件解决方案公司也有宣布,使用东芝“TC7718FTG”15W 无线充电发射器 IC 的无线充电发射器系统经认证符合无线充电联盟(WPC)制定的 Qi v1.2 EPP(扩展功率分布)标准。该系统采用支持简单系统配置的 MP-A2 (由无线充电联盟定义的使用 12V 单线圈的无线充电发射器系统) ,通过 Qi 认证的 MP-A2 发射器系统。
 
东芝推出无线充电接收器 IC——“TC7766WBG”,该产品经认证符合无线充电联盟(WPC)制定的 Qi v1.2 EPP(扩展功率分布)标准。TC7766WBG 是通过 Qi 认证的 15W 接收器 IC。
 
FAQ 及相关测试
1、人体危害:
当电磁波频率加到 1GHz 以上就会直接对水分子加热;这个原理就变成微波炉了,所以无论 13MHz 会对金属加热或是 1GHz 以上直接伤害人体,无线电力在设计时必需解决安全的问题才能上市
 
2、发热:
接收端 5W 的需求在只有 20%的转换效率下有 20W 的能量转换成热能散逸,这样的能量会产生庞大的热能会导致系统温度大幅上升,在这样的推算下,系统最大输出能力会在 25W,若为无安全设计下于发射器上放置金属异物可能会导致火灾意外。因此有必要做设备识别。
 
3、充放电效率问题:
发射端输入电压为 5VDC,接受线圈之间距离为 3cm,接收端通过接受线圈获取电能,通过整流滤波形成稳定的 5v 直流电。 
 
 
4、互感影响:垂直距离和水平位置影响
 
 

 

5、距离以及线圈大小对充电效率的影响
远距离(相隔一定的空间)的感应电能传输效率非常低,而在设备附近(例如表面)进行的感应电能传输则可以真正做到高效,其效率可与有线传输比拟。 
 
 
距离越大(z/D > 1)或线圈大小差距越大,效率降低的幅度越大
 
距离越小(z/D < 0.1),线圈大小越接近(D2/D = 0.5..1) ,效率越高
 
6、功耗问题
与 2 相同条件下,发射端待机功耗: