COOL MOSFET的EMI设计指南!

2019-06-12 06:50:00 来源:互联网
标签:

本文简述功率在转换器电路中的转换传输过程,针对开关器件MOSFET在导通和关断瞬间,产生电压和电流尖峰的问题,进而产生电磁干扰现象,通过对比传统平面MOSFET与超结MOSFET的结构和参数,寻找使用超结MOSFET产生更差。

 
本文简述功率在转换器电路中的转换传输过程,针对开关器件MOSFET在导通和关断瞬间,产生电压和电流尖峰的问题,进而产生电磁干扰现象,通过对比传统平面MOSFET与超结MOSFET的结构和参数,寻找使用超结MOSFET产生更差电磁干扰的原因,进行分析和改善。
 
随着开关电源技术的不断发展,功率MOSFET作为开关电源的核心电子器件之一,开关损耗是其主要的损耗之一,本着节省能源、降低损耗的基本思想,功率MOSFET技术朝着提高开关速度、降低导通电阻的方向发展。COOL MOSFET是一种超结的新结构功率MOSFET,具有更低的导通电阻,更快的开关速度,可以实现更高的功率转换效率。然而,超结MOSFET超快的开关性能也带来了不必要的副作用,比如电压、电流尖峰较高,电磁干扰较差等。
 
以下内容以一个反激式转换器拓扑(如图1)为例,简述转换器的功率转换传输过程,从平面MOSFET与超结MOSFET的结构和参数差别,讨论电压、电流尖峰,以及电磁干扰的产生机理,通过外围电路改善并降低电压、电流尖峰,从而实现降低电磁干扰的目的。
 
图1包含寄生元件的反激式转换器拓扑图
 
反激式转换器工作原理
图1为一个最简单的反激式转换器拓扑结构,并且包含以下寄生元件:如初级漏电感、MOSFET的寄生电容和次级二极管的结电容。该拓扑源自一个升降压转换器,将滤波电感替换为耦合电感,如带有气隙的磁芯变压器,当主开关器件MOSFET导通时,能量以磁通形式存储在变压器中,并在MOSFET关断时传输至输出。由于变压器需要在MOSFET导通期间存储能量,磁芯应该开有气隙,基于这种特殊的功率转换过程,所以反激式转换器可以转换传输的功率有限,只是适合中低功率应用,如电池充电器、适配器和DVD播放器。
 
反激式转换器在正常工作情况下,当MOSFET关断时,初级电流(id)在短时间内为 MOSFET的Coss(即Cgd+Cds)充电,当Coss两端的电压Vds超过输入电压及反射的输出电压之和(Vin+nVo)时,次级二极管导通,初级电感Lp两端的电压被箝位至nVo。因此初级总漏感Lk(即Lkp+n2×Lks)和Coss之间发生谐振,产生高频和高压浪涌,MOSFET上过高的电压可能导致故障。
 
反激式转换器可以工作在连续导通模式(CCM)(如图2)和不连续导通模式(DCM)(如图3)下,当工作在CCM模式时,次级二极管保持导通直至MOSFET栅极导通,而MOSFET导通时,次级二极管的反向恢复电流被添加至初级电流,因此在导通瞬间初级电流上出现较大的电流浪涌;当工作在DCM模式时,由于次级电流在一个开关周期结束前干涸,Lp和MOSFET的Coss之间发生谐振。
 
图2 连续导通模式
 
图3 不连续导通模式
 
图4显示了开关电源工作在DCM模式,实测的MOSFET电压和电流工作波形,除了可以看到MOSFET在开通和关断的过程中,均产生比较大的电压和电流变化,而且可以看到MOSFET在开通和关断的瞬间,产生一些震荡和电流尖峰。
 
 
如图1所示的包含寄生元件的反激式转换器拓扑图,其中Cgs、Cgd和 Cds分别为开关管MOSFET的栅源极、栅漏极和漏源极的杂散电容,Lp、Lkp、Lks和Cp分别为变压器的初级电感、初级电感的漏感、次级电感的漏感和原边线圈的杂散电容,Cj为输出二极管的结电容。图5为反激变换器工作在DCM工作模式时,开关管分别工作在(a)开通瞬间、 (b)开通阶段、 (c)关断瞬间和(d)关断阶段时,所对应的等效分析电路,Rds为开关管的漏源极等效电阻。
 
 
图5 反激变换器在DCM模式开关管工作在各阶段对应的等效分析电路
 
在开关管开通瞬间,由于电容两端电压不能突变,杂散电容Cp两端电压开始是上负下正,产生放电电流,随着开关管逐渐开通,电源电压Vin对杂散电容Cp充电,其两端电压为上正下负,形成流经开关管和Vin的电流尖峰;同时Cds电容对开关管放电,也形成电流尖峰,但是此尖峰电流不流经Vin,只在开关管内部形成回路;另外,如果变换器工作在CCM模式时,由于初级电感Lp两端电压缩小,二极管D开始承受反偏电压关断,引起反向恢复电流,该电流经变压器耦合到原边侧,也会形成流经开关管和Vin的电流尖峰。
 
在开关管开通阶段,二极管D截止,电容Cp两端电压为Vin,通过初级电感Lp的电流指数上升,近似线性上升。
 
在开关管关断瞬间,初级电流id为Coss充电,当Coss两端的电压超过Vin与nVo(二极管D开通时变压器副边线圈电压反射回原边线圈的电压)之和时,二极管D在初级电感Lp续流产生的电压作用下正偏开通,Lk和Coss发生谐振,产生高频震荡电压和电流。
 
在开关管关断阶段,二极管D正偏开通,把之前存储在Lp中的能量释放到负载端,此时副边线圈电压被箝位等于输出电压Vo,经匝比为n的变压器耦合回原边,使电容Cp电压被充电至nVo(极性下正上负),初级电感Lp两端的电压被箝位至nVo。当Lp续流放电结束后,D反偏截止,Lp和Coss、Cp发生谐振,导致Cp上的电压降低。
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
电感量、允许偏差、分布电容等五个贴片电感的参数解读

贴片电感,英语:Chip inductors,又称为功率电感、大电流电感和表面贴装高功率电感。具有小型化,高品质,高能量储存和低电阻等特性。

一文读懂同轴、双轴、三轴射频电缆的区别
一文读懂同轴、双轴、三轴射频电缆的区别

在寻找射频电缆或连接器时,你首先需要确定的是电缆。通常有3种类型的电缆,分别为同轴、双轴和三轴电缆,每种类型都有差异和不同的尺寸。以下教大家怎么认清这三种电缆。

逆变电路是什么?它的基本原理是什么?
逆变电路是什么?它的基本原理是什么?

逆变电路是与整流电路相对应,把直流电变成交流电称为逆变。当交流侧接在电网上,即交流侧接有电源时,称为有源逆变;当交流侧直接和负载链接时,称为无源逆变。

PCB晶振布局中辐射超标解析
PCB晶振布局中辐射超标解析

某行车记录仪,测试的时候要加一个外接适配器,在机器上电运行测试时发现超标,具体频点是84MHZ、144MH、168MHZ,需要分析其辐射超标产生的原因,并给出相应的对策。

“我需要真正的高输入阻抗”,你确定吗?
“我需要真正的高输入阻抗”,你确定吗?

在帮助选择运算放大器和仪表放大器时,我经常听到这样的声音:“我需要真正的高输入阻抗。”哦,真是如此吗?你确定吗?

更多资讯
电压保护器件: 具有高ESD(静电放电)鲁棒性的车载以太网用贴片压敏电阻

TDK株式会社(TSE:6762)凭借新型(AVRH10C221KT1R5YA8)产品扩大了其车载以太网用贴片压敏电阻的产品阵容,该新型产品具有非常高的ESD鲁棒性,特别适合用于恶劣的环境中。

解密低静态电流(low Iq):如何使用WEBENCH®为超低功耗应用设计近100%的占空比

许多电池供电的应用需要降压转换器才能在100%占空比条件下工作,其中VIN接近VOUT,以便在电池电压达到最低值时延长电池续航时间。

大联大诠鼎集团推出基于Richtek产品的直流无刷电机驱动应用之吊扇解决方案

2019年9月17日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下诠鼎推出基于立锜科技(Richtek)RT7075及RM05N60的直流无刷电机驱动应用之吊扇解决方案。

详解运算放大器电路中的失调电压与开环增益
详解运算放大器电路中的失调电压与开环增益

失调电压与开环增益,它们是表亲。理解这种“不完全”,可帮助你了解你运算放大器电路的误差。

OPPO 开创手机快充全新时代,65W Super VOOC 即将“量产”?

与非网9月16日讯,OPPO在早些年前,凭借“充电5分钟,通话2小时”的广告词风靡手机圈,短短的十个字却爆发出了巨大的力量,可能连OPPO也未曾想到,这十个字居然开创了手机快充全新时代。一开始OPPO靠这句话宣传自家的手机,但到了现在,快充已经成为了衡量手机指标的标准。