四管同步BuckBoost升降压变换器的具体的工作原理及设计过程

2019-07-16 05:27:00 来源:CNTR
标签:

 

四管同步BuckBoost升降压变换器为单电感结构,不需要耦合电容,尽管系统需要四个开关管,控制相比较复杂,但由于采用同步的变换器,系统的效率比SEPIC高,而且体积比SEPIC小,非常适用于汽车及通讯这类系统的效率和体积要求严格的应用。下面本文将讨论这种四管同步BuckBoost升降压变换器的具体的工作原理及设计过程的相关问题。
 
电子系统的一些应用中由于输入电压的变化,电源的输出可能低于输入电压也可能高于输入电压,对于非隔离的电源变换器,这时候要采用升降压的拓朴结构。常用的升降压拓朴结构SEPIC需要二个电压,中间还需要耦合电容,因此当输出功率较大时,电感和电容的体积大,成本高,而且整机系统效率差。
 
1、四管同步BuckBoost升降压变换器工作原理
四管同步BuckBoost升降压变换器的拓朴结构如图1所示,其中Cin和Cout分别为输入和输出直流滤波电容,A和B为输入侧功率开关管,C和D为输出侧功率开关管,可以看出:四个开关管结构类似于全桥的结构:A和B及C和D分别类似于全桥电路的二个桥臂,L为功率电感。
 
图1:四管同步BuckBoost升降压变换器拓朴结构
 
下面分三个模式说明这种电路结构的工作原理。
 
1.1、模式1:同步Buck模式,Vin>Vout+△V
当输入电压比输出电压高△V时,开关管D保持常开,开关管C保持常关,开关管A和B工作于同步的Buck模式。其工作原理与一般的同步的Buck工作原理完全相同,控制的方法为谷点电流模式,如图2所示,其中D为占空比。
D=Vo/Vin
 
图2:同步Buck模式
 
1.2、模式2:降压BuckBoost模式,Vout<Vin<Vout+△V
当输入电压比输出电压低△V,即输入电压略高于输出电压时,系统工作于降压式BuckBoos模式。开关周期起始时,开关管B/D先同时导通,然后A/C同时导通,最后是A/D同时导通,即开关管导通的顺序为:B/D–A/C–A/D。
 
开关管B/D同时导通,导通时间为△tBD,电感去磁,则有:
 
 
式中:△IL为电感电流的纹波。
 
开关管A/C同时导通时,导通时间为△tAC,电感激磁:
 
 
开关管A/D同时导通时,导通时间为△tAD,电感继续激磁:
 
 
考虑到磁通在每个开关周期必须复位,则有:
 
 
所以可以得到:
 
 
对于降压BuckBoost变换器,调节△tAC小于△tBD就可以控制系统得到正确的输出,△tAD值远大于△tAC和△tBD。当输入电压略大于输出电压且输入电压非常接近输出电压时系统进入降压BuckBoost工作模式,电路的控制和工作波形见图3所示。
 
图3:降压BuckBoost工作模式
 
1.3、模式3:升压BuckBoost模式,Vin<Vout<Vin+△V
输出电压比输入电压高△V,即输入电压略低于输出电压时,系统工作于升压BuckBoos模式。开关周期起始时,开关管A/C先同时导通,然后B/D同时导通,最后是A/D同时导通,即开关管导通的顺序为:A/C–B/D–A/D。
 
开关管A/C同时导通时,导通时间为△tAC,电感激磁:
 
 
 
式中:△IL为电感电流的纹波。
 
开关管B/D同时导通时,导通时间为△tBD,电感去磁:
 
 
 
开关管A/D同时导通时,导通时间为△tAD,电感继续去磁:
 
 
 
 
考虑到磁通在每个开关周期必须复位,则有:
 
 
 
所以可以 得到:
 
 
升压BuckBoost模式和降压BuckBoost模式的公式完全一样,调节△tAC大于△tBD就可以控制系统得到正确的输出。当输入电压略小于输出电压且即输入电压非常接近输出电压时系统进入升压BuckBoost工作模式,电路的控制和工作波形见图4所示。
 
图4:升压BuckBoost工作模式
 
升压和降压BuckBoost模式控制策略稍有不同:
 
(1) 降压BuckBoost模式仍然是降压模式,所以要先深去磁,再短时间的深激磁,然后长时间的浅激磁;
 
(2) 升压BuckBoost模式仍然是升压模式,所以要先深激磁,再短时间的深去磁,然后长时间的浅去磁。
 
BuckBoost模式下输入电压和输出电压非常接近,输入和输出基本上长时间保持直通,开关状态工作的时间很短,控制器通过内部的调节使系统工作于升压或降压BuckBoost模式。
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
电子电路故障检测方法,你了解几个?

电子电路故障排查一般可以通过输入到输入顺序检测,也可以从输出到输入的反向方法检测。不管从哪一方向开始,电子电路故障检测一般可以通过以下八种方法判断。

什么是线性光耦?电路应该如何设计?
什么是线性光耦?电路应该如何设计?

光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

绝对式编码器之接触编码器原理解析
绝对式编码器之接触编码器原理解析

接触式编码器的码盘基体是个绝缘体,码道是一组同心圆。码道的数目根据分辨率决定,同心圆环的径向距离即是码道宽。

双面板 PCB 系统分析,铺铜到底有何作用?
双面板 PCB 系统分析,铺铜到底有何作用?

注意信号线的PCB板边缘的走线 如果铺地;这个信号线对外的信号耦合就减小了;PCB铺铜地在PCB板的边缘的地方就要有;

你真的会用二极管吗?7种二极管应用电路详解
你真的会用二极管吗?7种二极管应用电路详解

许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析

更多资讯
什么是“机密计算”?为何微软、IBM、英特尔、阿里巴巴、腾讯等都在布局?

一大批大型科技公司将为Linux Foundation主导的新计划提供支持,该计划旨在促进“机密计算”概念也就是在使用时对数据进行加密。

电感式接近开关为何只认识金属物体?选用安装有哪些注意事项?
电感式接近开关为何只认识金属物体?选用安装有哪些注意事项?

接近开关在控制系统中是种常见的传感元件,也是一种传感器。因为它具有传感器性能,而且动作可靠、性能稳定、频率回应快、抗干扰能力强、还具备防水、防振、耐腐蚀等特点。

软银投资了 1.1 亿美元的技术,其实我们高中就学过?

话说上周末,小辣椒家碰上了大停电。。。

详解十个运放电路设计可能会遇到的“坑”,下次遇到千万提防
详解十个运放电路设计可能会遇到的“坑”,下次遇到千万提防

运放输出电压到不了电源轨的这种明坑踩了后,我选择了轨到轨的运放,哈哈,这样运放终于可以输出到电源轨了。高兴的背后是一个隐蔽大坑等着我

所有电压轨都需要使用低静态电流(Low Iq)吗?

所有超低功耗系统的设计师都非常关心电池的使用寿命。健身追踪器的电池需要多长时间充电一次? 而对于一次性电池系统而言,技术人员需要隔多久维护一次智能电表或更换电池? 显然,设计的目标是尽可能延长电池续航时间。