随着智能手机功能的不断丰富,电池容量呈逐渐增加的趋势,同时出现“短时间内完成充电”的需求。因此,采用 USB Type-C 进行快充的方式逐渐增多。


快充系统所使用的 DC-DC 转换器通过开关将直流转换为矩形波以转换电压,因此会产生开关噪声。
 


 
快充的充电电流值较大,因此与传统充电器比较,其开关噪声问题尤为突出。
 
快充的噪声问题
快速充电器产生的噪声通过基板上的图案或电缆向空中辐射,并进入本机的无线接收天线,从而使接收灵敏度下降。接收灵敏度下降导致可接收范围变小或接收速度降低,从而使设备性能下降。
 
启动快充后…
 


噪声问题案例
 
下面介绍因快充噪声导致接收灵敏度下降的例子。
 
以下数据为快充开始前后的接收灵敏度确认值。条形向下延伸越多,灵敏度越高。
 
与未充电状态比较,快充时的 LTE low band (700~900Mhz) 接收灵敏度有所下降。
 


 
观察噪声分布
 
采用噪声可视化工具确认问题是否来源于基板上的噪声。
 


 
观察基板上的噪声分布及进入天线的噪声,发现基板上的噪声谱与耦合到天线的噪声谱相似。
 

基板上的噪声谱
 

耦合到天线的噪声
 

噪声传导路径
经确认,噪声的传导路径如下:DC-DC 转换器产生的噪声从电源输出线经过平滑电容器传导至基板地线,并从图案向外辐射,最终进入天线。

 


 
[噪声传导路径]
 
  ①噪声传导至 DC-DC 转换器的输出线


  ②噪声从电源线经过平滑电容器传导至基板地线


  ③传导至基板地线的噪声从图案向外辐射,从而降低无线接收灵敏度
 
静噪建议
根据刚才的调查结果,可以确认噪声从 DC-DC 转换器的输出单元产生,推测在输出单元中插入铁氧体磁珠会有效果。同样,输入单元也容易产生噪声,因此希望在输入单元也使用铁氧体磁珠。
 
快速充电时会产生大电流,请选用额定电流较高的铁氧体磁珠。
 
另外,为应对无线载波频率噪声,应选择高频特性优良的产品。

 


 
推荐的滤波器
 
BLE18PS 系列最大支持 8A,在 GHz 频段上可以获得高阻抗,适合该用途。
 


 
确认静噪效果
 
在实机上确认了使用铁氧体磁珠后的静噪效果。
 
在平滑电容器前插入铁氧体磁珠 BLE18PS080SN1。
 


 
静噪对接收灵敏度的改善效果
 
插入铁氧体磁珠,以确认接收灵敏度的改善程度。
 
比较插入前后快充期间的灵敏度,可以确认在 LTE Low band 的 700MHz-900MHz 上,接收灵敏度有所改善。
 


 
确认静噪后的噪声分布变化
 
通过噪声可视化工具确认噪声已减少。
 
可以确认基板上分布的噪声水平有所降低。
 


 
天线的噪声水平降低
 
如下图所示,可以确认进入天线的噪声水平降低。

 


 
(参考)确认插入滤波器的影响
 
确认插入滤波器是否会影响 DC-DC 转换器的效率。发现插入滤波器前后,效率未发生变化,由此可判断对效率无不良影响。
 


 
其他静噪要点
 
本次仅在 DC-DC 转换器的输出单元插入了滤波器,建议在输入单元也插入滤波器。(BLE18PS080SN1)
 
本次的验证示例中未出现问题,但有时输入侧也会因开关噪声而出现问题。
 


 
滤波器插入点① 充电器 IC 的输出单元 (平滑电容器前)
 
滤波器插入点② 充电器 IC 的输入单元 (输入电容器前)
 
本次介绍的噪声滤波器 
 
BLE18PS080SN1