超导材料,是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。已发现有28种元素和几千种合金和化合物可以成为超导体。

1.超导材料有哪些

1.超导材料有哪些

(来源于网络)

 

1.铜氧超导体,铜氧超导体是最早发现的高温超导体,20世纪八十年代缪勒、柏诺兹合成的钡-镧-铜-氧系高温超导体和朱经武、赵忠贤合成的钇-钡-铜-氧系高温超导体均属于此范畴。

 

2.铁基超导体,自从2006年发现铁基超导体以来,对铁基超导体日趋深入,比较突出的成果有:2008年,日本科学家细野秀雄发现掺杂F的LaFeOP超导体具有26K的临界温度。

 

3.硼化镁超导体,2001年1月,日本青山学院大学J.Akimitsu教授等人首次发现MgB2具有超导电性,其临界温度约为39K。虽然硼化镁的临界温度较低,但与铜氧超导体、铁基超导体相比,仍有很多优势,包括:结构简单、易于制备、原料来源广泛。

 

2.超导材料原理

2.超导材料原理

(来源于网络)

 

1.超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感应电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。



2.超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。



3.外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。

 

3.超导材料应用

 

3.超导材料应用

(来源于网络)

 

超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:

 

1.利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。

 

2.利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。

 

3.利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。