加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
    • 优化封装技术突破开关性能限制
    • 调整驱动设计降低功率损耗
    • 总结
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

如何化解第三代半导体的应用痛点

2022/04/27
615
阅读需 14 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

集成电路和分立器件领域,硅始终是应用最广泛、技术最成熟的半导体材料,但硅材料技术的成熟恰恰意味着难以突破瓶颈。为了打破固有屏障,半导体产业进一步深入对新材料、新工艺、新架构的探索。凭借着在功率、射频应用中的显著性能优势,第三代半导体逐渐显露出广阔的应用前景和市场发展潜力。

所谓第三代半导体,即禁带宽度大于或等于2.3eV的半导体材料,又称宽禁带半导体。常见的第三代半导体材料主要包括碳化硅(SiC)、氮化镓GaN)、氮化铝(AIN)、氧化锌(ZnO)和金刚石等,其中又以碳化硅和氮化镓材料技术的发展最为成熟。与第一代、第二代半导体材料相比,第三代半导体材料通常具备更宽的禁带宽度、更高的击穿场强、更高的热导率,电子饱和速率和抗辐射能力也更胜一筹,在高温、高压、高频、高功率等严苛环境下,依然能够保证性能稳定。

图1:第三代半导体的材料特性

(图源:STMicroelectronics)

 

从应用领域来看,第三代半导体材料广泛应用于射频器件、光电器件功率器件等领域。以功率半导体市场为例,据TrendForce集邦咨询报告,在新能源汽车、光伏储能、智能电网等市场需求拉动下,预计2025年第三代半导体功率市场规模将增至47.1亿美元,年复合增长率高达45%。从下游细分市场来看,由于材料性能不尽相同,碳化硅与氮化镓在应用场景上也略有差异。碳化硅具备更高的热导率,主要面向新能源汽车、光伏发电、轨道交通、智能电网等高压、高功率应用;而氮化镓则以其更高的电子迁移率,高频特性较好,广泛应用于PD快充、新能源充电桩5G通信等领域。

图2:碳化硅及氮化镓应用优势领域

(图源:英飞凌

 

整体而言,碳化硅、氮化镓器件市场已经初具规模,在功率和射频应用领域完成了对硅基半导体器件的初步替代。但由于材料制备技术、器件制造与封装工艺、动静态测试、驱动设计优化以及可靠性等问题尚未完全解决,导致第三代半导体器件的性能大打折扣,无法完全发挥其材料本身的优势。关键技术不成熟、成本居高不下,第三代半导体器件自然难以实现更大规模的商业化落地。下面我们就从碳化硅、氮化镓器件的应用痛点出发,梳理一下国际大厂是如何攻克这些难题的。

优化封装技术突破开关性能限制

与硅功率半导体相比,碳化硅功率器件拥有更快的开关速度、更小尺寸和更低损耗,有望在诸多应用中取代IGBT。然而受限于传统封装技术,碳化硅功率器件的性能优势难以完全得到发挥。传统封装形式通常采用TO-247N,栅极引脚和源极引脚的寄生电感将会与寄生电容发生振荡,从而使MOSFET导通所需的栅极电压降低,导通速度减慢。为此,一些厂商正在寻求更完善的封装方案,以优化器件性能,进一步挖掘碳化硅器件潜力。

贸泽电子在售的来自制造商ROHM Semiconductor的SCT3080KW7TL,是一款7引脚SiC功率MOSFET

SCT3080KW7TL采用了TO-263-7L表贴封装,将电源源极与驱动器源极引脚分离开,可提供独立于电源的驱动器源,有效消除了导通时源极电感对栅极电压的影响。导通时,电流变化时间缩减,导通损耗降低;关断时,寄生电感减少,关断损耗也相应降低。此外,SCT3080KW7TL专有的沟槽式栅极结构将导通电阻降低了50%,输入电容降低了35%。

图3:SiC MOSFET平面结构与沟槽结构性能比较

(图源:罗姆

 

具体来看,SCT3080KW7TL漏源极击穿电压为1.2kV,连续漏极电流为30A,具有很低的漏源导通电阻,数值为104mΩ。独立式驱动器源极也让SCT3080KW7TL驱动更加简单便捷、易于并联,有助于进一步降低应用设备的功耗。在太阳能逆变器DC/DC转换器开关电源电机驱动等领域,SCT3080KW7TL已经取得了广泛应用。

ROHM Semiconductor另一款也在贸泽有售的BM2SC121FP2-LBZE2,则是一款准谐振AC/DC转换器IC。该芯片同样采用了小型表贴封装TO-263-7L,内部集成了1700V耐压SiC MOSFET及其栅极驱动电路。与Si-MOSFET相比,BM2SC121FP2-LBZE2将AC/DC转换器控制IC、800V耐压Si-MOSFET、齐纳二极管电阻器和散热板集成在一个封装内,极大地削减了部件数量,在小型化方面极具竞争优势。同时,该芯片内置了高精度过热保护功能,实现了更高的可靠性能。

图4:BM2SC12xFP2-LBZ应用电路

(图源:罗姆)

 

此外,BM2SC121FP2-LBZE2采用了电流检测电阻作为外部器件,IC设计简单且高度灵活。控制电路采用准谐振方式,运行噪声低、效率高、可软启动,可充分降低EMI。整体而言,BM2SC121FP2-LBZE2为大功率逆变器、AC伺服等工业设备提供了低成本、小型化、高可靠性、高效率的AC/DC转换器解决方案。

 

调整驱动设计降低功率损耗

作为栅极电压控制器件,MOSFET栅极驱动电压的振荡直接影响着元器件的可靠性,更甚至会造成电路故障或失效。MOSFET器件在转换过程中,栅极与漏极之间的米勒电容将会诱发米勒振荡,干扰栅源极电压上升,从而延长了开关切换时间,导通损耗大幅增加,系统稳定性也随之降低。对于SiC MOSFET而言,其出色的开关速度和性能更是加剧了米勒导通效应。因此,如何减少米勒电容、降低米勒效应的影响,成为各大厂商迫切需要解决的难题。

对此,贸泽电子在售的来自STMicroelectronics的SCTH35N65G2V-7AG提供了一种效果显著的解决方案。SCTH35N65G2V-7AG采用了STMicroelectronics第二代碳化硅MOSFET技术,具有极低的导通电阻和优异的开关性能。该器件漏源极击穿电压为650V,漏源导通电阻最大67mΩ,栅极电荷和输入电容极小,广泛应用于开关电源、DC/DC转换器和工业电机控制等领域。

为了缓解米勒效应,SCTH35N65G2V-7AG采用了有源米勒钳位技术,在瞬态电压额定值低于20V/ns时,有效地抑制了米勒振荡,减少了开关的错误导通率,提高了系统稳定性。在较高瞬态电压下,SCTH35N65G2V-7AG则通过在栅源极使用齐纳保护限制振铃,进一步优化电路输出波形。

此外,与传统IGBT相比,在相同额定电压和等效导通电阻下,SCTH35N65G2V-7AG表现出更加优秀的耐高温、低损耗性能,适用于高开关频率应用场景,可减小无源元件的尺寸。同时,SCTH35N65G2V-7AG的导通损耗与关断损耗均不受结温影响。温度从25℃上升至175℃时,该器件的导通电阻变化率明显低于竞争产品。

图5:导通电阻随温度的变化

(图源:STMicroelectronics)

STMicroelectronics另一款贸泽在售的单栅极驱动器STGAP2SICSNTR为中高功率应用提供了一个易于使用的驱动方案。该器件可在栅极驱动铜导与低压控制接口电路间提供电流隔离,具备4A与轨到轨输出能力。STGAP2SICSNTR提供了两种不同的配置选项,第一配置具有独立输出引脚,通过使用专用的栅极电阻器独立优化导通和关断。第二种配置则具备单输出引脚和米勒钳位功能,抑制了半桥拓扑结构高速转换时产生的栅极尖峰。总体而言,STGAP2SICSNTR为功率转换和电机驱动器逆变器等工业应用提供了高度灵活、成本低廉的设计方法。

图6:STGAP2SICSNTR两种配置电路框图

(图源:STMicroelectronics)

STGAP2SICSNTR内置了UVLO和热关断保护功能,可针对SiC MOSFET进行值优化。通过双输入引脚选择控制信号极性,实现硬件互锁保护,避免控制器故障时发生交叉输出,可帮助工程师轻松设计高可靠性系统,提升系统运行稳定性和抗干扰能力。

此外,STGAP2SICSNTR高压轨高达1,700V,全温度范围内dv/dt瞬变抗扰性在100V/ns左右,输入输出延迟低于75ns,PWM控制精度较高,能够有效提高系统精度。

贸泽电子在售的STMicroelectronics GaN半桥高压驱动器MASTERGAN1TR,采用电源系统级封装,集成了半桥栅极驱动器和两个增强型高压GaN晶体管,为开关电源、充电器、太阳能发电、UPS系统、高压PFC、DC/DC和DC/AC转换器等应用提供了简单紧凑的解决方案。

图7:MASTERGAN1TR电路框图

(图源:Mouser)

MASTERGAN1TR还内置了集成式功率分流器和自举二极管,漏源导通电阻约150mΩ,漏源击穿电压为650V,可为嵌入式栅极驱动器快速供电。同时提供UVLO保护和互锁保护,避免电源开关在低效率或危险条件下工作。

总结

随着新能源汽车、电力电网和5G通信等领域迅速发展,以碳化硅、氮化镓为代表的第三代半导体凭借着其在高压、高温、高频应用中的优势,逐渐显露出对硅基半导体的替代作用。然而受限于传统封装工艺、驱动设计等技术瓶颈,第三代半导体器件散热、可靠性方面都面临着新的难题和挑战。

面对这些应用痛点,贸泽在售的多种类型的功率器件及模块、门驱动器在封装工艺和驱动技术方面进行了创新和优化,打破了传统技术的限制,最大限度地挖掘了宽禁带半导体材料的性能优势,推动宽禁带半导体器件更大规模的商业化应用落地。

技术发展日新月异,半导体产业对于新材料及材料技术的追求从未止步,超宽禁带半导体材料逐渐走进人们的视野。以氧化镓(GaO)为例,与碳化硅和氮化镓相比,该材料的带隙更宽、击穿场强更高,在大功率、高频率、高电压设备中拥有更高的应用价值和更广阔的发展前景。跟随技术演进方向,贸泽也将不断扩展产品类目,丰富解决方案,全面助力宽禁带、超宽禁带半导体的发展。

该发布文章为独家原创文章,转载请注明来源。对于未经许可的复制和不符合要求的转载我们将保留依法追究法律责任的权利。

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
66506-9 1 TE Connectivity PIN CONTACT, 20 DF

ECAD模型

下载ECAD模型
$0.24 查看
61729-0010BLF 1 Amphenol Communications Solutions USB 2.0, Input Output Connectors, Receptacle, Type B, Standard, Right Angle, Through Hole, Single Decks, 4 Positions

ECAD模型

下载ECAD模型
$0.78 查看
MMBT3904 1 Secos Corporation Small Signal Bipolar Transistor, 0.2A I(C), 40V V(BR)CEO, 1-Element, NPN, Silicon, ROHS COMPLIANT, PLASTIC PACKAGE-3
$0.04 查看

相关推荐

电子产业图谱

贸泽电子(Mouser Electronics)是全球授权半导体和电子元器件代理商,致力于以高效的方式向电子设计工程师和采购推广新一代产品和新技术,全面支持研发阶段的采购。Mouser.cn一个芯片也可出货,新一代产品信息和技术内容每日更新,可在线搜寻超过 1200 家品牌制造商的 3100 多万种产品,其中680 多万种产品可直接在线订购,产品涵盖的应用领域包括工业、机器人技术、物联网、新能源、汽车电子等。想深入了解贸泽电子,请访问:http://www.mouser.cn