自举电路也叫升压电路,是利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。下面小编给大家介绍一下“最简单的自举电路图分析


1.最简单的自举电路图分析

自举电路字面意思是自己把自己抬起来的电路,是利用自举升压电容的升压电路,是电子电路中常见的电路之一。我们经常在IC外围器件中看到自举电容,比如同步降压转换器(BUCK)电路中,Cboot就是自举电容。

对于上管Q1而言,源极S本来就有一定的输出,要知道,当上管导通时,漏极D和源极S之间的电压Vds是很小的,如果要想直接驱动栅极G,满足Vgs>Vgs(th)的条件,则需要在栅极G和地之间加一个很高的电压,这个难以实现控制。自举电路应运而生。

有了自举电路,就可以轻松在上管栅极G产生一个高压,从而驱动上管MOS。

在充电过程中,开关闭合(三极管导通),开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

当开关断开(三极管截止)时,由于电感的电流 保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电, 电容两端电压升高,此时电压已经高于输入电压了。升压完毕。

说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电感量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

最简单的自举电路图分析

(图片来源于互联网)