ESD(Electro-Static discharge)的意思是“静电释放”。ESD是20世纪中期以来形成的以研究静电的产生、危害及静电防护等的学科。因此,国际上习惯将用于静电防护的器材统称为ESD,中文名称为静电阻抗器。接下来,详细为你说下“常用的esd保护器件有哪些 esd保护器件哪个好”

 

一、常用的esd保护器件有哪些

常用的ESD保护器件主要有Diode、Resistor、P/NMOS、BJT、SCR等,因其具有雪崩击穿、雪崩与注入等特性,能够瞬间进入低阻态,故具有良好的电流泄放能力,可以作为ESD防护器件。

常用的esd保护器件有哪些

二、esd保护器件哪个好

1. Diode
在ESD设计中,Diode是一种常见的器件。图2为Diode的一种典型应用情况,在VDD相对于VSS发生Positive ESD Pulse时,Diode发生雪崩击穿并释放ESD电流,从而保护内部电路不受ESD影响。但由于二极管完全通过雪崩击穿释放ESD电流,在大电流下器件的功耗很大,因此这种模式下二极管的抗ESD能力往往很低,器件的微分电阻也较大;而在VDD相对于VSS发生Negative ESD Pulse时,该Diode为正偏并释放ESD电流,由于二极管的正向导通电压很小,此模式下器件的功耗很小,因此其抗ESD能力非常强。

由于Diode在正偏和反偏两种状态下的ESD能力差别非常大,因此目前在使用二极管作ESD保护器件时往往会采用非常大的器件面积提升二极管反偏状态下的ESD能力,如此一来,缺点是非常明显的,它增大了ESD器件的面积占用,更为严重的是,对于高频引脚而言,此方式会带来较大的寄生电容,使引脚的频率特性变差。

2. MOS & BJT
MOS与BJT用于ESD放电保护原理基本上是一样的,均是通过寄生的BJT来释放ESD电流。因CMOS使用最为广泛的工艺之一,所以MOS器件成使用最为普遍的ESD保护器件。采用MOS器件作为芯片的ESD防护架构示例如图3所示。为防止ESD器件在芯片正常工作时导通,MOS的栅极总是采用关断的连接方式,即栅接地的NMOS(Gate-Grounded NMOS,GG-NMOS)和栅接电源的PMOS(Gate-VDD PMOS,GD-PMOS)。GG-NMOS的等效电路如图4所示,其ESD应力下的I-V曲线示意图如图1所示。当漏端相对于源端发生Positive ESD Pulse时,漏端N+/Pwell结雪崩击穿,击穿产生的空穴电流将通过Pwell流至P+,并在Pwell的等效电阻Rpw上产生压降,当该压降大于寄生NPN器件的BE结正向导通电压时,寄生的NPN器件即可导通,此时的电压即为器件的触发电压Vt1,在此之后,由于寄生NPN器件的导通及其放大作用,使器件漏端电压不需要很高的电压即可维持大的电流,因此I-V曲线会出现折回(snapback)现象和负微分电阻现象,即在某段电流范围内,器件两端电压随着电流的增大反而减小。当电流增大到某一值时,由于器件两端的电压不可能无限下降,以及器件内部的寄生电阻作用,负阻现象转变为正阻,这一转变过程中器件两端的最低电压即为器件的维持电压Vh,它表征器件能将ESD Pulse钳位的最低电压。在电流非常大时,器件内部产生的热量将使器件内部由热产生的载流子数远大于雪崩击穿和注入的载流子数,并且温度越高,热产生的载流子数量越大,进而形成正反馈,因此曲线会再次出现折回,该点的电压和电流分别为器件的二次击穿(热击穿)电压Vt2和二次击穿电流lt2,它们分别表征器件发生损毁时的电压和器件最大耐受电流。最终,器件将由于温度过高而导致永久性损坏。而在漏端相对于源端发生Negative ESD Pulse时,电流可通过正偏的源端P+/Pwell/漏端N+二极管释放。
与NMOS相比,PMOS通过体内寄生的PNP型BJT器件进行电流泄放,其电流放大系数远低于NMOS中寄生的NPN型器件。因此,如图所示,PMOS器件可能没有折回现象,考虑到器件的防护效率,PMOS的使用远没有NMOS普及,一般只作为电源VDD与I/O引脚之间的防护。

esd保护器件哪个好