PCB设计中如何消除反射噪声?

2018-12-29 16:09:59 来源:电路设计技能
标签:

 

什么是反射噪声?反射噪声会对你的PCB性能产生什么影响?如何能够做到尽可能低的反射噪声?
 
这是网站“Allaboutcircuits(www.allaboutcircuits.com)”上的一篇英文文章,在此分享给大家,供有志于用英语阅读技术文章的朋友参考。
 
What Is Reflection Noise?
Whenever we send a signal from one digital integrated circuit to another on our PCBs, we change the state of a signal line. That change in state and the accompanying changes in the electromagnetic fields can be described as a wave as it moves through the circuit. Waves are phenomena that transfer energy from one location to another, with conductors guiding the path of propagation.
 
This is an artistic impression of magnetic energy surrounding a wire as the potential of the wire changes.
 
Reflection noise results when an electromagnetic wave encounters a boundary from one medium to the next. When the wave meets the boundary, part of the energy is transmitted as signal and part of it is reflected.
 
This animation illustrates that, when waves travel from one medium to another, not all energy is transmitted—a portion of the energy is reflected back to its source.
 
For electrical engineers, the medium where this boundary occurs is usually described in terms of its electrical impedance; that is, the boundary is where impedance changes.
 
Impedance is composed of resistive and reactive elements. Resistors dissipate a circuit’s energy as heat. The recoverable energy in a circuit exists in the electromagnetic fields that permeate and surround conductors, inductors, and capacitors.
 
Whenever the impedance changes in a circuit, some amount of reflection will occur. The reflected wave will travel back to the next boundary (the location where there is a change in impedance) and reflect again.
 
This 1D wave illustration shows a wave pulse reflected between two points. The energy is attenuated over time/distance.
 
The process will continue indefinitely until the energy is absorbed by the circuit or dissipated into the environment.
 
Why Is Reflection Noise a Problem?
For signal lines, there will be reflection points at your driver and receiver. The job of the engineer is to minimize the amount of reflected signal and maximize the amount of transmitted signal through impedance matching.
 
If that is not possible, the additional energy will need to be dissipated before it accumulates and drowns out a signal with noise.
 
If the energy of the reflected pulse does not dissipate before the next pulse is generated, the energy will accumulate and add in a phenomenon called superposition. Fortunately, signals attenuate as they pass through resistive elements. So a simple series resistor will eliminate most ringing.
 
Assessing Noise in Digital Signals
Fourier’s theorem teaches that any wave or wave-pulse can be decomposed into a series of sine and/or cosine waves. If you'd like more insight into this concept, I recommend this video on the harmonic analyzer with Bill Hammack of the University of Illinois.
 
If you have a sufficiently small rise/fall time, a single pulse can hold in it dozens of small-amplitude waves.
 
In the image below, you can see an undamped digital signal switching logic states from low to high.
 
An undamped digital signal (yellow, channel 1) captured on a TI Lightcrafter as it switches logic states from low to high.
 
Now check out the image below, where the left-hand image shows a composite wave pulse created through the successive superposition of decreasing amplitude odd-harmonics of the original wave. For signals of practical interest, we can decompose the waveform into a series of sine waves.
 
 
As the above figures show, a real digital signal has a large bandwidth and any portion of that energy might create a resonance in your circuit. This is in contrast to RF signals that have very narrow bandwidth with easy to calculate resonances. 
 
If you do manage to create standing waves, you will create enormous sources of noise that can overwhelm any signal line in the vicinity. 
 
 
This gif shows that a wave (orange) reflected at a particular wavelength can combine with its reflection (blue) to create a high amplitude standing wave (green). This phenomenon will happen at odd-integer multiples of ½ wavelength, where the wavelength is twice the length of your trace.
How to Reduce Reflection Noise
 
There are several methods you can use to manage reflection noise in your design. Here's an overview of some of the techniques at your disposal.
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
适用于振动和冲击环境:新款小型自带锁扣功能的连接器

2019年2月26日,I-PEX MHF 4L LK极细同轴线射频连接器,设计有锁扣功能,可防止公座脱离于焊接在PCB上的母座。在多次嵌合过程中,拔出力优于不带锁扣的产品。

电源模块的高低温性能如何保证?

现在电源模块的体积越来越小,功率密度也越来越高,并且模块的工作环境也愈发恶劣,其高低温设计、热设计以及应力问题逐渐引起了各位工程师的重视。电源模块的可靠性设计有何秘籍?本文为你揭晓。

HT876 两节锂电池串联立体声2x10W音频放大解决方案

随着蓝牙音箱功能和性能的快速提升,消费者对功率及音质的要求也越来越高,在室外应用场景下,单节锂电池方案已经越来越难满足设计需求了,对于音箱的设计者来说,两节锂电池串联设计已是更优的选择。

Melexis 推出无 PCB 霍尔效应锁存器,助力汽车应用中的座椅电机定位

全球微电子工程公司 Melexis 今日宣布隆重推出集成无源组件(392Ω 电阻和去耦电容)的无 PCB 双线制霍尔效应锁存器--- MLX92223,其完全兼容行业标准的电子控制单元 (ECU),无需另外使用任何外部组件。

传感器不只能让你的系统更加智能,有时也会给你添乱
传感器不只能让你的系统更加智能,有时也会给你添乱

当传感器按照预期正常工作时,人们几乎不会注意到它们的存在,人们只会想到如果没有这些传感器,系统将不可能实现哪些优势。但是,传感器有时仍然可能会发生故障,每当此时,客户们就会觉得自己的投资打了水漂,进而丧失对传感器供应商及其品牌的信任。下面是五种可能发生的常见传感器故障,以及如何解决并消除它们。

更多资讯
2019年1月份北美PCB走低但订单出货比强劲

IPC-国际电子工业联接协会®近日发布《2019年1月份北美地区PCB行业调研统计报告》。报告显示1月份销售量和订单量均大幅下落,但是订单出货比攀升至1.06。

符合医疗安规的超紧凑,SIP9封装, 5W DC-DC转换器,可有效节省PCB板空间

2019年 3月6日作为一款具有26W/in3出色功率密度的产品,XP Power的SIP9封装,5W额定功率的IMM05转换器占用PCB板空间比竞争对手的产品少65%,其极低的2uA漏电流使其成为医疗BF和CF应用的理想选择。

芯禾科技电磁仿真软件IRIS 通过GLOBALFOUNDRIES 12LP工艺认证

国内EDA软件、集成无源器件IPD和系统级封装领域的领先供应商,芯禾科技于近日宣布其三维全波电磁场(EM)仿真软件IRIS已通过GLOBALFOUNDRIES格芯的12纳米领先性能(12LP)工艺技术认证。该认证能确保设计人员可以放心地使用格芯12LP的FinFET半导体制造工艺文件进行IRIS仿真。

IPC PCB技术趋势报告详述PCB制造商的应对策略

IPC—国际电子工业联接协会®新发布《2018年PCB技术趋势调研报告》。报告中详述了PCB制造商如何应对当前技术需要来满足截止到2023年的技术变革。

NCAB集团在马来西亚成立分公司,总经理已到位

“在较长一段时间内,我们考虑在马来西亚拓展业务的可能性。我们看到整个东南亚电子市场蓬勃发展,尤其是马来西亚国内对多品种小批量PCB需求不断增长。槟城更是许多国际大型EMS以及本地EMS的制造基地,所以NCAB马来西亚将会是我们继续扩展到周边国家的基地。”NCAB集团首席财务官Anders Forsén 在一份新闻稿中表示。

Eugene

电路方案
双管反激激电路

双管反激激电路

2019-03-19 13:38:47
LPC1788核心板

LPC1788核心板

2019-03-19 13:38:35
GPS、GPRS模块

GPS、GPRS模块

2019-03-19 13:16:47
USB-RS232

USB-RS232

2019-03-19 13:15:18