PCB设计中如何消除反射噪声?

2018-12-29 16:09:59 来源:电路设计技能
标签:

 

什么是反射噪声?反射噪声会对你的PCB性能产生什么影响?如何能够做到尽可能低的反射噪声?
 
这是网站“Allaboutcircuits(www.allaboutcircuits.com)”上的一篇英文文章,在此分享给大家,供有志于用英语阅读技术文章的朋友参考。
 
What Is Reflection Noise?
Whenever we send a signal from one digital integrated circuit to another on our PCBs, we change the state of a signal line. That change in state and the accompanying changes in the electromagnetic fields can be described as a wave as it moves through the circuit. Waves are phenomena that transfer energy from one location to another, with conductors guiding the path of propagation.
 
This is an artistic impression of magnetic energy surrounding a wire as the potential of the wire changes.
 
Reflection noise results when an electromagnetic wave encounters a boundary from one medium to the next. When the wave meets the boundary, part of the energy is transmitted as signal and part of it is reflected.
 
This animation illustrates that, when waves travel from one medium to another, not all energy is transmitted—a portion of the energy is reflected back to its source.
 
For electrical engineers, the medium where this boundary occurs is usually described in terms of its electrical impedance; that is, the boundary is where impedance changes.
 
Impedance is composed of resistive and reactive elements. Resistors dissipate a circuit’s energy as heat. The recoverable energy in a circuit exists in the electromagnetic fields that permeate and surround conductors, inductors, and capacitors.
 
Whenever the impedance changes in a circuit, some amount of reflection will occur. The reflected wave will travel back to the next boundary (the location where there is a change in impedance) and reflect again.
 
This 1D wave illustration shows a wave pulse reflected between two points. The energy is attenuated over time/distance.
 
The process will continue indefinitely until the energy is absorbed by the circuit or dissipated into the environment.
 
Why Is Reflection Noise a Problem?
For signal lines, there will be reflection points at your driver and receiver. The job of the engineer is to minimize the amount of reflected signal and maximize the amount of transmitted signal through impedance matching.
 
If that is not possible, the additional energy will need to be dissipated before it accumulates and drowns out a signal with noise.
 
If the energy of the reflected pulse does not dissipate before the next pulse is generated, the energy will accumulate and add in a phenomenon called superposition. Fortunately, signals attenuate as they pass through resistive elements. So a simple series resistor will eliminate most ringing.
 
Assessing Noise in Digital Signals
Fourier’s theorem teaches that any wave or wave-pulse can be decomposed into a series of sine and/or cosine waves. If you'd like more insight into this concept, I recommend this video on the harmonic analyzer with Bill Hammack of the University of Illinois.
 
If you have a sufficiently small rise/fall time, a single pulse can hold in it dozens of small-amplitude waves.
 
In the image below, you can see an undamped digital signal switching logic states from low to high.
 
An undamped digital signal (yellow, channel 1) captured on a TI Lightcrafter as it switches logic states from low to high.
 
Now check out the image below, where the left-hand image shows a composite wave pulse created through the successive superposition of decreasing amplitude odd-harmonics of the original wave. For signals of practical interest, we can decompose the waveform into a series of sine waves.
 
 
As the above figures show, a real digital signal has a large bandwidth and any portion of that energy might create a resonance in your circuit. This is in contrast to RF signals that have very narrow bandwidth with easy to calculate resonances. 
 
If you do manage to create standing waves, you will create enormous sources of noise that can overwhelm any signal line in the vicinity. 
 
 
This gif shows that a wave (orange) reflected at a particular wavelength can combine with its reflection (blue) to create a high amplitude standing wave (green). This phenomenon will happen at odd-integer multiples of ½ wavelength, where the wavelength is twice the length of your trace.
How to Reduce Reflection Noise
 
There are several methods you can use to manage reflection noise in your design. Here's an overview of some of the techniques at your disposal.
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
硬件产品经理都应该知道的 - 如何从原型到批量产品?
硬件产品经理都应该知道的 - 如何从原型到批量产品?

推荐一本超级值得公司的产品经理看的书 - Product to Product: A Practical Guide for Getting to Market。

硬件工程师都应该DIY一个示波器
硬件工程师都应该DIY一个示波器

我一直觉得,一个硬件工程师怎么也要自己DIY一次示波器,只有这样才能深刻掌握电信号的基本属性及信号处理的过程,通过自己动手制作能够真正掌握模拟电路、数字逻辑、处理器、输入控制、输出显示、电源管理以及软件设计等全方位的知识和技能。

LDO基础知识:噪声 - 第2部分

在我的上一篇博文LDO基础知识:噪声 – 第1部分中,我探讨了如何减少输出噪声和控制压摆率,方法是为参考电压(CNR/SS)并联一个电容器。在本篇博文中,我将讨论降低输出噪声的另一种方法:使用前馈电容(CFF)。

从你画我猜的角度出发理解通信理论中的噪声问题

这是一篇关于通信的小故事,握着手机的你请不要太过严肃地把这篇文章当作枯燥的学术文章,这只能算是一个通信出身的孩子对生活的一点新的理解,不需要太高的阅读门槛,只希望屏幕前的你可以通过这个小故事对这个世界有一个新的理解。

高集成度的射频RF,你也需要了解如何使用
高集成度的射频RF,你也需要了解如何使用

在软件无线电统治无线通信的今天,所有功能的器件都尽可能高度集成了,尤其是超级难调的射频部分(RF),如果你要用分立器件去搭一个手机出来,估计没有几个人能够把板子的性能做到满足要求。

更多资讯
与传统开关电源(SMPS)驱动LED相比,交流直接驱动(DACD)的优势

LED技术推动了照明领域的一场革命。结合小型、低功耗、高可靠性和低成本,使得照明可以在不可能用白炽灯或荧光灯技术的地方实施。因此,LED照明在办公室、家庭甚至在我们的车上激增。

PMOS/NMOS/CMOS这些MOS管的使用准则

所有MOS管集成电路(包括P沟道MOS,N沟道MOS,互补MOS管-CMOS集成电路)都有一层绝缘栅,以防止电压击穿。一般器件的绝缘栅氧化层的厚度大约是25nm50nm80nm三种。

影响安装和调试的若干PCB丝印隐患
影响安装和调试的若干PCB丝印隐患

PCB设计中丝印的处理是很容易被工程师忽略的一个环节,一般大家都不太注意,随意处理,但在这个阶段的随意很容易导致日后板卡元器件的安装和调试问题,甚至会彻底毁掉你的整个设计。

PCB设计中模拟电路和数字电路布线时的异同

工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。

PCB技术详解:HDI技术实现高密度互连板(孔径3-5mil,线宽3-4mil)

HDI板,是指High Density Interconnect,即高密度互连板,是PCB行业在20世纪末发展起来的一门较新的技术。

电路方案