PCB设计中如何消除反射噪声?

2018-12-29 16:09:59 来源:电路设计技能
标签:

 

什么是反射噪声?反射噪声会对你的PCB性能产生什么影响?如何能够做到尽可能低的反射噪声?
 
这是网站“Allaboutcircuits(www.allaboutcircuits.com)”上的一篇英文文章,在此分享给大家,供有志于用英语阅读技术文章的朋友参考。
 
What Is Reflection Noise?
Whenever we send a signal from one digital integrated circuit to another on our PCBs, we change the state of a signal line. That change in state and the accompanying changes in the electromagnetic fields can be described as a wave as it moves through the circuit. Waves are phenomena that transfer energy from one location to another, with conductors guiding the path of propagation.
 
This is an artistic impression of magnetic energy surrounding a wire as the potential of the wire changes.
 
Reflection noise results when an electromagnetic wave encounters a boundary from one medium to the next. When the wave meets the boundary, part of the energy is transmitted as signal and part of it is reflected.
 
This animation illustrates that, when waves travel from one medium to another, not all energy is transmitted—a portion of the energy is reflected back to its source.
 
For electrical engineers, the medium where this boundary occurs is usually described in terms of its electrical impedance; that is, the boundary is where impedance changes.
 
Impedance is composed of resistive and reactive elements. Resistors dissipate a circuit’s energy as heat. The recoverable energy in a circuit exists in the electromagnetic fields that permeate and surround conductors, inductors, and capacitors.
 
Whenever the impedance changes in a circuit, some amount of reflection will occur. The reflected wave will travel back to the next boundary (the location where there is a change in impedance) and reflect again.
 
This 1D wave illustration shows a wave pulse reflected between two points. The energy is attenuated over time/distance.
 
The process will continue indefinitely until the energy is absorbed by the circuit or dissipated into the environment.
 
Why Is Reflection Noise a Problem?
For signal lines, there will be reflection points at your driver and receiver. The job of the engineer is to minimize the amount of reflected signal and maximize the amount of transmitted signal through impedance matching.
 
If that is not possible, the additional energy will need to be dissipated before it accumulates and drowns out a signal with noise.
 
If the energy of the reflected pulse does not dissipate before the next pulse is generated, the energy will accumulate and add in a phenomenon called superposition. Fortunately, signals attenuate as they pass through resistive elements. So a simple series resistor will eliminate most ringing.
 
Assessing Noise in Digital Signals
Fourier’s theorem teaches that any wave or wave-pulse can be decomposed into a series of sine and/or cosine waves. If you'd like more insight into this concept, I recommend this video on the harmonic analyzer with Bill Hammack of the University of Illinois.
 
If you have a sufficiently small rise/fall time, a single pulse can hold in it dozens of small-amplitude waves.
 
In the image below, you can see an undamped digital signal switching logic states from low to high.
 
An undamped digital signal (yellow, channel 1) captured on a TI Lightcrafter as it switches logic states from low to high.
 
Now check out the image below, where the left-hand image shows a composite wave pulse created through the successive superposition of decreasing amplitude odd-harmonics of the original wave. For signals of practical interest, we can decompose the waveform into a series of sine waves.
 
 
As the above figures show, a real digital signal has a large bandwidth and any portion of that energy might create a resonance in your circuit. This is in contrast to RF signals that have very narrow bandwidth with easy to calculate resonances. 
 
If you do manage to create standing waves, you will create enormous sources of noise that can overwhelm any signal line in the vicinity. 
 
 
This gif shows that a wave (orange) reflected at a particular wavelength can combine with its reflection (blue) to create a high amplitude standing wave (green). This phenomenon will happen at odd-integer multiples of ½ wavelength, where the wavelength is twice the length of your trace.
How to Reduce Reflection Noise
 
There are several methods you can use to manage reflection noise in your design. Here's an overview of some of the techniques at your disposal.
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
推荐一下AutoDesk的PCB设计软件Eagle
推荐一下AutoDesk的PCB设计软件Eagle

应邀,今天给20多位老师和同学做了一场关于Eagle工具使用的培训,这些老师和学生都曾经用过Altium Designer,出乎我意料的是,他们从下载安装软件,到走通从配置元器件库、原理图输入、PCB自动布线整个过程可以在1个多小时的时间里完成。

射频能量采集技术
射频能量采集技术

前几天的文章留言中还有不少网友问能量收集是怎么回事?如何工作的?正巧今天看到公众号“传感器技术”上发表的一篇文章,特转过来分享给大家。

用树莓派和FPGA构建具有立体视觉和LiDAR的“驴车”
用树莓派和FPGA构建具有立体视觉和LiDAR的“驴车”

无人驾驶和机器人很火,也是当今人工智能的重要方向。如何用随手可得的树莓派和FPGA构建一款拥有一定人工智能的“无人驾驶”的车?这篇来自Hackster上的获奖开源项目可以给大家很好的参考。

设计复杂PCB板时应考虑的电源分配网络及电容的布局

在进行比较复杂的板子设计的时候,你必须进行一些设计权衡。因为这些权衡,那么就存在一些因素会影响到PCB的电源分配网络的设计。

硬件产品经理都应该知道的 - 如何从原型到批量产品?
硬件产品经理都应该知道的 - 如何从原型到批量产品?

推荐一本超级值得公司的产品经理看的书 - Product to Product: A Practical Guide for Getting to Market。

更多资讯
PCB设计中的单点接地,多点接地,浮地和混合接地分析

电路图上和电路板上的GND(Ground)代表地线或0线.GND就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。它与大地是不同的。有时候需要将它与大地连接,有时候也不需要,视具体情况而定。

使用ADS处理网络分析仪测量的传输线的S参数得到板材参数

本案例主要展示如何使用ADS处理网络分析仪测量的传输线的S参数,从测量的数据中提取板材介质参数,提高设计精度。实验内容包括编写AEL函数、后处理验证、以及去嵌入等内容。

开关电源设计法则之去耦电容容值、去耦半径计算

有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播,和将噪声引导到地。

与传统开关电源(SMPS)驱动LED相比,交流直接驱动(DACD)的优势

LED技术推动了照明领域的一场革命。结合小型、低功耗、高可靠性和低成本,使得照明可以在不可能用白炽灯或荧光灯技术的地方实施。因此,LED照明在办公室、家庭甚至在我们的车上激增。

PMOS/NMOS/CMOS这些MOS管的使用准则

所有MOS管集成电路(包括P沟道MOS,N沟道MOS,互补MOS管-CMOS集成电路)都有一层绝缘栅,以防止电压击穿。一般器件的绝缘栅氧化层的厚度大约是25nm50nm80nm三种。

电路方案