FPGA和DDS在信号源中的应用

2015-06-02 08:34:31 来源:互联网
标签:

 

1引言

DDS同DSP(数字信号处理)一样,是一项关键的数字化技术。DDS是直接数字式频率合成器(DirectDigitalSynthesizer)的英文缩写。与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。在各行各业的测试应用中,信号源扮演着极为重要的作用。但信号源具有许多不同的类型,不同类型的信号源在功能和特性上各不相同,分别适用于许多不同的应用。目前,最常见的信号源类型包括任意波形发生器,函数发生器,RF信号源,以及基本的模拟输出模块。信号源中采用DDS技术在当前的测试测量行业已经逐渐称为一种主流的做法。但DDS专用器件价格较贵,输出波形单一,使用受到一定限制,特别不适合于输出波形多样化的应用场合。随着高速可编程逻辑器件FPGA的发展,电子工程师可根据实际需求,在单一FPGA上开发出性能优良的具有任意波形的DDS系统,极大限度地简化设计过程并提高效率。本文在讨论DDS的基础上,介绍利用FPGA设计的基于DDS的信号发生器。

2 DDS技术工作原理

一块DDS芯片中主要包括频率控制寄存器、高速相位累加器和正弦计算器三个部分(如Q2220)。频率控制寄存器可以串行或并行的方式装载并寄存用户输入的频率控制码;而相位累加器根据频率控制码在每个时钟周期内进行相位累加,得到一个相位值;正弦计算器则对该相位值计算数字化正弦波幅度(芯片一般通过查表得到)。DDS芯片输出的一般是数字化的正弦波,因此还需经过高速D/A转换器和低通滤波器才能得到一个可用的模拟频率信号。DDS信号发生器,主要由相位累加器、相位寄存器、波形存储器、D/A转换器和模拟低通滤波器组成如图1所示。fR为参考时钟,K为输入频率控制字,其值与输出频率相对应,因此,控制输入控制字K,就能有效控制输出频率值。通常情况下,K值由控制器写入。



图1 DDS信号发生器组成原理图


由图1可知,在参考时钟fR的控制下,频率控制字K与相位寄存器的输出反馈在相位累加器中完成加运算,并把计算结果寄存于相位寄存器,作为下一次加运算的一个输入值。相位累加器输出高位数据作为波形存储器的相位抽样地址值,查找波形存储器中相对应单元的电压幅值,得到波形二进制编码,实现相位到电压幅值的转变。波形二进制编码再通过D/A转换器,把数字信号转换成相应的模拟信号。低通滤波器可进一步滤除模拟信号中的高频成分,平滑模拟信号。在整个过程中,当相位累加器产生一次溢出时,DDS系统就完成一个周期输出任务。频率控制字K与输出波形频率的函数表达关系式为:

f0=(K/2N)fR(1)

式中,K为频率控制字;fR为参考时钟,N为累加器的位宽值。

当K=l时,可得DDS的最小分辨率为:

fmin=fR/2(2)

为了得到较小分辨率,在实际工程设计中,N一般取得较大值,该系统是N取32位设计的。

3关键器件选型

本设计所用到的关键器件主要是可编程逻辑器件(FPGA)和D/A转换器。考虑设计成本等因素,FPGA采用Altera公司的低成本Cyclone系列EPlC6Q240C8.该器件采用逻辑阵列模块(LAB)和查找表(LUT)结构,内核采用1.5 V电压供电,是低功耗元件。此外,Cyclone系列EPlC60240C8内部资源丰富,其内部内嵌5 980个逻辑单元(LE),20个4 KB双口存储单元(M 4 KB RAM block)和92 160 bit普通高速RAM等资源,因此,能较好满足该系统设计要求。而D/A转换器则采用National Semiconductor公司的DAC0832.

4 DDS的FPGA实现

4.1相位累加器与相位寄存器的设计

VerilogHDL是一种硬件描述语言(HDL:HardwareDiscriptionLanguage),是一种以文本形式来描述数字系统硬件的结构和行为的语言,用它可以表示逻辑电路图、逻辑表达式,还可以表示数字逻辑系统所完成的逻辑功能。VerilogHDL和VHDL是目前世界上最流行的两种硬件描述语言,都是在20世纪80年代中期开发出来的。前者由GatewayDesignAutomation公司(该公司于1989年被Cadence公司收购)开发。两种HDL均为IEEE标准。

相位累加器与相位寄存器主要完成累加,实现输出波形频率可调功能。利用Quartus II可编程逻辑器件系统开发工具进行设计。首先,打开Quartus II软件,新建一个工程管理文件,然后在此工程管理文件中新建一个Verilog HDL源程序文件,并用硬件描述语言Verilog HDL编写程序实现其功能。在设计过程中,可在一个模块中描述。一个参考的Verilog HDL程序如下:


4.2基于1/4波形的存储器设计

为了提高系统的分辨率和降低FPGA资源的利用率,采用基于1/4波形的存储器设计技术。利用正弦波对称性特点,只要存储[O~π/2]幅值,通过地址和幅值数据变换,即可得到整个周期内的正弦波,其设计原理如图2所示。
 



图2 1/4波形的存储器件设计原理框图


用相位累加器输出高2位,作为波形区间标志位。当最高位与次高位都为"0"时,表示输出正弦波正处在[0~π/2]区间内,这时,地址与输出数据都不需要变换;当最高位为"0",次高位为"l"时,输出正弦波正处在[π/2~π]区间内,这时,地址变换器对地址进行求补操作,而输出数据不变;当最高位为"l",次高位为"0"时,输出正弦波正处在[π~3π/2]区间内,这时,地址不变,而输出变换器对输出数据进行求补操作;当最高位与次高位都为"l"时,输出正弦波正处在[3π/2~2π]区间内,这时,地址和输出数据都进行求补操作。

5 D/A转换电路

数据转换器输出的数据是数字形式的电压值,为实现数字电压值与模拟电压值之间的转换,系统还专门设计D/A转换电路,其D/A转换电路原理图如图3所示。



图3 D/A转换电路

 

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
拒绝华为offer的复旦博士,蔡宇杰的“开挂”历程

“与其去大疆做一些娱乐性产品,不如选择去华为‘救国’”,蔡宇杰坐在对面,向我说道。

将PIC单片机的数据存储器RAM作为寄存器使用的教程
将PIC单片机的数据存储器RAM作为寄存器使用的教程

pic单片机,想必大家都比较熟悉。其中,pic单片机简介、pic单片机优势以及pic单片机不足等内容,皆是入门级知识。本文将向大家介绍pic单片机的高级应用——将pic单片机的数据存储器RAM用作寄存器,本文存在一定难度,望大家用心研读。

FPGA是否可以脱离CPU独立部署?

作为一种硬件可重构的体系结构,FPGA经常被用作专用芯片(ASIC)的小批量替代品,随着全球数据中心的大规模部署,以及人工智能应用的落地,FPGA凭借强大的计算能力和高度的灵活性有了更多的用武之地。

如何寻找并使用一个适用于FPGA的机器学习平台?
如何寻找并使用一个适用于FPGA的机器学习平台?

随着摄像头和其他设备产生的数据在快速增长,促使人们运用机器学习从汽车、安防和其他应用产生的影像中提取更多有用的信息。专用器件有望在嵌入式视觉应用中实现高性能机器学习 (ML) 推理。但是此类器件大都处于早期开发阶段,因为设计人员正在努力寻找最有效的算法,甚至人工智能 (AI) 研究人员也在迅速推演新方法。

FPGA 设计经验分享

从大学时代第一次接触FPGA 至今已有10多年的时间,至今记得当初第一次在EDA实验平台上完成数字秒表、抢答器、密码锁等实验时那个兴奋劲。

更多资讯
Qualcomm董事会任命Mark McLaughlin担任董事长

Qualcomm Incorporated(NASDAQ: QCOM)今日宣布任命Mark McLaughlin接替Jeff Henderson担任董事会董事长,该任命于2019年8月13日生效。

科技成就品质生活 戴森举办“智享-净鉴”杭州分享会

今日,戴森在杭州举行地板清洁类新品媒体分享会,旨在为当地家庭提供完整的家居清洁方案。Dyson V11 Absolute智能无绳吸尘器、Dyson V7 Mattress手持除螨吸尘器及Dyson 360 Heurist智能吸尘机器人皆为现代繁忙生活背景下的各类清洁难题设计,协助用户吸除日常生活中的常见微尘,有害颗粒及过敏原[1],以科技

FPGA小技巧:面积换速度的实例讲解
FPGA小技巧:面积换速度的实例讲解

在FPGA中,如果要将一个采样率为480MHz,中频频率为302.5MHz的信号变频到零中频的基带信号,要怎么做呢?

践行“数据中心优先”策略,赛灵思再发U50完善Alveo平台

IDC预测,到2025年,全球将有416亿台物联网设备,并将产生79.4 zettabytes(zb)的数据。虽然数据被看作未来的石油,但是同样也需要强大的算力将无序的数据加以提取,形成有用信息,才能给用户带来价值。由于数据在源源不断产生,只凭借CPU进行计算已经远远无法满足需求,于是设计人员开始采用异构架构为数据中心加速,FPGA发挥越

剑指 CPU 和 GPU,FPGA 开辟新战场

在网络、计算和存储领域,越来越多的应用需要专用的架构,以使硬件能够和算法进行匹配,从而达到最佳运行效果,或者是提高它的运行速度。现在,网络上有很多不同的数据,这些数据在运行过程当中,它的要求是不一样的。