精准、低功耗的远程检测理念

2019-05-14 07:18:00 来源:EEFOCUS
标签:
这里展示的远程检测实例具有高可靠性、易连通性和超低功耗的特性。这些电路主要面向需要稳定通信和最低限度的电池维护的工业环境。本解决方案结合了近年来低功耗、高精度放大方面的研究进展,兼具同等的低功耗、高可靠性无线Mesh网络功能。支持实现这些解决方案的是零漂移、低输入偏置放大器LTC2063LTP5901-IPM,前者最高以2 µA电流运行,后者在睡眠模式下消耗电流不到1.5 µA。这些器件的功耗足够低,可以采用一块由铜和锌电极(每个四平方英寸),以及由柠檬内部物质形成的电解质组合而成的电池供电。
 
无线Mesh网络
工业环境中通过无线网络实施和检索的测量很少需要高速度,但它们通常需要高可靠性和安全性,此外还需要低功耗运行,以最大限度地延长电池的运行时间。LTP5901-IPM在802.15.4e无线网络中形成一个节点或者一个SmartMesh® IP Mote。LTP5901-IPM集成了一个10位、0 V至1.8 V ADC,以及一个内置ARM® Cortex®-M3 32位微处理器,可以通过简单编程实施检测。采用这个终端是为了实现安全性、可靠性、低功耗、灵活性以及可编程性。
 
四种检测应用
总的来说,以下这些电路设计并不需要高深的火箭知识。但是,它们整洁、高效,是针对特定应用定制的。这些设计不需要多复杂,事实上,复杂的设计只会增加成本和可靠性风险。
 
每个电路的输入中都包含一个传感器,通过处理传感器输出来产生输出电压。使用LTP5901-IPM 10位ADC作为输入,每个电路都试图映射输入,覆盖0 V至1.8 V之间的大部分范围。
 
基本的电池电压检测
 
图1.简单的电池电压检测。
 
图1展示了一种典型的同相整体增益负反馈运算放大器配置,可以检测分压。LTP5901输入的ADC范围为0 V至1.8 V。R1和R2以最小的静态电流降低电池电压,以延长电池寿命。LTC2063的输入偏置电流非常低,即使这些高电阻值也不会影响最终的10位ADC的精度。LTC2063消耗最小的电源电流,提供随时间和温度变化而呈现的零漂移优势。
 
电流检测
 
图2.电流检测电路。
 
电池供电和隔离电子设备的出色之处在于:它可以在任何位置设置接地。在最方便的电路拓扑结构中,我们可以在不丧失通用性的情况下检测电流,同时将终端放置在与本地接地相关的任何位置。对于单极电流,例如4 mA至20 mA的工业环路,人们可以使用传统的低侧拓扑结构来安全检测与本地接地相关的电流。图2展示的是电流流过一个非常小的电阻R2,由此产生检测电压。因为放大器的零漂移、极低的失调电压性能等原因,这个输入电压可能非常小。电路所示经由501 mΩ检测电阻产生的输入的增益增高101 V/V。在20 mA时,VOUT是1.012 V。可以选择其他值来最大程度地使用ADC的1.8 V范围。
 
电阻R4相对较低,是LTC2063输入电容的低阻抗分流器。因此,较大的R1反馈电阻与输入电容之间的相互作用不会起到稳定作用。
 
构建的电路经过优化之后,用于测试0 mA至35 mA电流、0 V至1.8 V ADC的映射范围。
 
辐照度计
 
图3.利用太阳能电池进行短路辐照度测量。
 
图2所示的电路也可以用来测量太阳能电池的短路电流。在短路电流模式下,硅和其他太阳能电池的电流与辐照度呈高度线性关系。短路电流是0 V太阳能电池的电流。图3中的电路并没有保证太阳能电池在最大电流时准确达到0 V;但是,即使在全日光下为20 mA,电压也仅为10 mV。太阳能电池上的10 mV电平在其I-V曲线上实际就是短路。
 
我们可以以互阻放大器(TIA)作为替代。TIA可以强制让太阳能电池达到0 V,并测量电流。这种电路存在的问题在于,在整个辐照度范围内,都是由运算放大器为太阳能电池提供电流。如果对于远程检测电路,最重要的是最小化功耗,那么由运算放大器为电池提供20 mA是不可行的。
 
考虑到需要保持近0 V,应使用一个小型检测电阻。对位置遥远、由电池供电的小电压实施检测再次表明,需要采用高精度、低功耗的功率放大器,例如LTC2063。
 
太阳能装置所需的就是这类物理布局,即需要实施零温度漂移测量的无线Mesh网络。幸运的是,在短路条件下,硅光电二极管随着温度的变化相对稳定。对于环境温度不断变化的大型安装场地而言,采用LTC2063和LTP5901-IPM,再加上硅太阳能电池,所构成的简单且可靠的设计是非常理想的解决方案。
 
采用热电偶测量温度
 
图4.热电偶检测电路。
 
热电偶电压可以是正压也可以是负压。图4所示的电路融合采用微功率基准电压源和微功率放大器来检测极小的正负电压。幸运的是,如果热电偶与被测器件(DUT)电气隔离,则可以置于任何方便的电压域中。图4中的示例使用LT6656-1.25,在1.25 V时偏置热电偶。电路输出是基于1.25 V基准电压源的小热电偶电压的高增益版本。对于这种配置,0 V至1.8 V的ADC范围相当合理。如果不使用零漂移、低失调放大器,则无法实现2000 V/V左右的极高增益。
 
结论
极低功耗、精准的远程检测绝对是可行的。本文的示例显示,将低功耗、高精度放大器与可编程片上系统无线Mesh节点相结合是相当简单的。
 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
传感器信号调理的挑战解决方案

同步解调可以解决很多传感器信号调理所共有的特性挑战。本文讨论在严格的功耗和成本限制系统中使用同步解调进行传感器信号调理时的一些设计考虑因素。

SPI接口简介

串行外设接口(SPI)是微控制器和外围IC(如传感器、ADC、DAC、移位寄存器、SRAM等)之间使用最广泛的接口之一。本文先简要说明SPI接口,然后介绍ADI公司支持SPI的模拟开关与多路转换器,以及它们如何帮助减少系统电路板设计中的数字GPIO数量。

基准电压源应当如何选择?
基准电压源应当如何选择?

基准电压源只是一个电路或电路元件,只要电路需要,它就能提供已知电位。对系统设计人员而言,问题不在于是否需要基准电压源,而是使用何种基准电压源?

采用PGA的SAR转换器可实现125 dB的动态范围

对于需要高动态范围的应用,通常使用Σ-Δ转换器。这些应用主要可以在化学分析、医疗保健和体重管理领域找到。但是,其中许多模块无法快速转换。图1中的电路描述了一种将高动态范围与高转换率相结合的方法。

ADI和First Sensor合作开发LIDAR产品加快实现自动驾驶未来

Analog Devices, Inc. (ADI)今日宣布与First Sensor AG合作,共同开发旨在加速推出自主传感技术的产品,服务于交通、智能农业、工业制造及其他行业应用中的无人驾驶汽车、飞行器和水下交通工具。

更多资讯
2019 年 DRAM 价格面临拦腰暴跌,未来形势究竟如何?

据Gartner公司声称,预计2019年全球半导体收入将达到4290亿美元,比2018年的4750亿美元下滑9.6%。这比上一季度的预测:-3.4%有所下降。

骁龙 855+ 的性能表现究竟如何?对抗华为麒麟 985 谁能更胜一筹?
骁龙 855+ 的性能表现究竟如何?对抗华为麒麟 985 谁能更胜一筹?

高通最近对自家旗舰芯片骁龙855进行了升级,但这款全新推出的骁龙855+和原版型号并没有多少区别,这不禁让我们去猜测为何高通会设计这款芯片,以及哪些智能手机将会去使用它。

RISC-V :潜藏巨大风险,投入仍需谨慎

中美贸易战是最近很热的一个话题,在半导体行业更是讨论的如火如荼。如何尽快开发出基于自主可控CPU架构的芯片已经成为每一个中国半导体业者的重要课题。现在最热门的就是RISC-V架构了,是否基于RISC-

苹果将与英特尔达成 10 亿美元协议,调制解调器芯片业务谈判完成?

据知情人士透露,苹果正就收购英特尔智能手机调制解调器(Modem)芯片业务进行深入谈判,如果谈判没有破裂,下周可能会达成一项包括价值10亿美元的专利和员工的协议。尽管对估值近万亿美元的苹果来说,10亿美元的收购价格只是九牛一毛,但这笔交易在战略和财务上都很重要。

AMD在日本零售市场继续攀升,市占接近7成

在日本BCN Retail公布的最新报告中,AMD在7月8日到14日之间进一步提升了零售市场的销量占比,达到了68.6%,这是AMD的历史最高水平。