基于相控阵雷达技术的探地雷达技术相比传统雷达有何优势?

2019-01-08 08:15:05 来源:互联网
标签:

 

虽然探地雷达在水文、工程、环境等领域已得到广泛的应用,但由于许多基本的理论和技术问题至今未得到根本解决,因而探地雷达的真正优势并没有得到充分的发挥。

 

浅析探地雷达技术目前存浅析探地雷达技术目前存在的问题及未来展望在的问题及未来展望

 

探地雷达技术当前存在的主要问题包括:

1)探测深度浅,探测深度和分辨率的矛盾无法克服,加大探测深度意味着牺牲探测分辨率;

2)多次波及其它杂波干扰严重,且一直没有好的消除办法,国内外的雷达均存在这一严重问题;

3)介质不均匀影响很大,且无法消除,导致难以获得必要的速度资料;

4)单发单收的数据采集方式能够提供给后期处理和解释的信息量有限。

 

以上几个问题对探地雷达来说是致命性的缺陷。尽管众多地球物理学家、电磁学专家和物探工作者对雷达的天线设计、信号处理、地下目标成像等方面做了大量的研究和改进,但这些工作只是对现有探地雷达体制进行的局部的修正,要想探地雷达技术向前发展,必须更新思路,从根本原理上解决问题。

 

针对这一状况,专家于1999年提出研制一套新型的探地雷达系统——相控阵探地雷达探测系统。

 

其基本研究思路是利用目前军事上较成熟的相控阵雷达技术,将目前的单极子雷达天线代之以相控阵雷达天线,其目的旨在通过相控阵技术将电磁波聚成一个窄波束向地下(或探测对象)发射,采用多通道采集技术接收目标体反射的雷达回波信号,并对其进行先进的数据处理最终给出探测对象内部结构的三维图像。

 

浅析探地雷达技术目前存浅析探地雷达技术目前存在的问题及未来展望在的问题及未来展望

 

探地雷达技术发展展望

值得指出的是,目前市场上已有类似产品出现,如某公司的RIS天线阵系列,但这些产品只是将多个单极子天线简单地组合成阵列天线,与相控阵探地雷达思想有本质的区别。

 

由于相控阵雷达通过对各通道相位延时的控制将电磁波会聚成一个窄束,因而能量集中,波前扩散小,因此,在相同频率和发射功率条件下相控阵雷达的探测深度要大得多;反言之,在同一探测深度条件下,相控阵雷达可以把发射功率提高,因而其分辨率比现有雷达要高得多。此外,由于将球面波发射改为波束发射,介质不均匀影响要小得多。

 

其次,相控阵雷达工作属于连续扫描方式,可以多方向扫描,因而信息量较之现有探地雷达要大得多,对有些特殊探测工作,如堤防防渗墙质量检测等,其作用是现有探地雷达无法相比的(单极子天线雷达根本无法检测堤防防渗墙的接缝、开叉等缺陷)。

 

由于相控阵雷达是多通道接收信号,可以进行多道叠加,如同反射地震勘探的多次覆盖技术。因此,多次波干扰可极大地消除,这是现有雷达难以做到的。高频(600MHz-1GHz)相控阵探地雷达的天线可以做得较小,在浅层探测时,其优越性也是现有探地雷达无法比拟的。

 

目前这套系统样机已经完成,采用中心频率为900MHz的无载波脉冲工作体制,发射和接收天线分离,16(4×4)发射通道形成波束聚集、扫描16(4×4)通道接收回波,可选扫描角度为-36°、-24°、-12°、0°、12°、24°、36°七个方向。

 

系统的软件部份具有丰富的数据处理功能,主要的常规处理有滤波、增益调整、静动校正、反褶积、复信号分析、时频分析等,多通道数据处理如速度分析、叠加技术、相干分析技术、阵列信号处理等。及各种杂波干扰下弱信号的提取、目标的自动识别和反演解释等。并在宜昌三峡大坝对混凝土检测做了大量的现场实验,实验结果表明相控阵雷达的聚束扫描功能已经实现,穿透深度大于1.5m且分辨率高于普通雷达。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
激光雷达系统面临的五大挑战正在被逐一攻关
激光雷达系统面临的五大挑战正在被逐一攻关

本文探讨了当今激光雷达系统面临的五大挑战以及如何克服这些挑战。它还证明了,一旦消除了这些障碍,激光雷达将具备更广泛的应用空间。

这些障碍一解除,激光雷达就将实现新突破?
这些障碍一解除,激光雷达就将实现新突破?

现如今传统的LiDAR体系架构的发展正面临着五大挑战,使其无法作为一种经济高效的解决方案大规模使用,而此解决方案可提高汽车性能和安全性,解决更多的工业流程问题和应用,并为消费类产品增加新的功能。

AEye推出全新激光雷达传感器,适用于3级ADAS应用

近日,AEye公司推出了AE200系列传感器,该颠覆性固态传感器适用于3级高级驾驶员辅助系统(ADAS)应用。

自动驾驶行业“遗留问题”解答

行业观察家已经看到科技公司、Tier 1和汽车OEM制造商之间兴起的新一轮自动驾驶伙伴关系。有几家公司正对Level 2级到Level 3级自动驾驶操控权的移交问题尝试新技术,例如以色列ADAM公司,正在尝试利用人工智能(AI)及算法助力其技术平台,以解决人、车驾驶操控权的移交问题。

自动驾驶带MEMS传感器厂商飞?除了大热的激光雷达/毫米波雷达还有哪些传感器的机会
自动驾驶带MEMS传感器厂商飞?除了大热的激光雷达/毫米波雷达还有哪些传感器的机会

首先,您认为MEMS传感器未来的三大应用包括哪些?如果您的答案中没有“汽车”市场,那证明您没有在浮躁的市场“回声室”中人云亦云(回声室效应,形象地体现了如今社交媒体上的一种普遍现象:由于相同的观点被人们不断地重复、夸大,因此很难听到质疑的声音)

更多资讯
卫星通信天线发展趋势及典型产品分析

据统计,2017年全球发射500Kg以下小卫星达310颗,美国行星公司的“鸽群”卫星计划、“乌鸦座-广覆盖”卫星计划、SpaceX公司的星链计划、中国鸿雁星座计划等,势必将商业航天推向发展的顶峰,也必将推动商业航天各个领域产业发展,尤其在卫星应用领域的导航、通信、遥感领域将带来飞跃式发展,并将催生更多、更广的尖端技术。

射频能量采集技术
射频能量采集技术

前几天的文章留言中还有不少网友问能量收集是怎么回事?如何工作的?正巧今天看到公众号“传感器技术”上发表的一篇文章,特转过来分享给大家。

磁共振设备中的射频系统故障原因及排除方案

射频系统是磁共振设备中最基本的部分,包括发射和接收二部分,由于该部分电路部件多,大功率触点多,而且切换频繁,触点易损坏,出现故障的几率相对大一些。当射频系统中任一环节出现问题时,都会使整个设备完全瘫痪,连最基本、最简单的任务也不能完成。因此对排除这方面的故障进行分析总结,有利于提高排除故障的能力,有较大的现实意义。

基于AT89S51和MF RC500的RFID阅读器系统设计

RFlD是射频识别技术(Radio Frequency denti-fieation)的英文缩写,又称电子标签,是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。RFID的最早应用可追溯到第二次世界大战中用于区分联军和纳粹飞机的“敌我辨识”系统。

超宽带定位技术与其他无线定位技术的对比

目前,常见的定位技术主要有:蓝牙、RFID、WIFI、超宽带(UWB)、超声波等。智物达“智寻”超宽带(UWB)定位系统是一种以极低功率在短距离内高速传输数据的无线定位技术。

电路方案