从RF信号源上进行能量采集将成为物联网设备的标配?

2019-01-14 08:34:49 来源:EEFOCUS
标签:

工业和商业应用中的电子设备越来越多了,从RF收集能量作为电源的方案越来越普遍。

日常生活中的电子设备越来越多了,它们都需要某种形式的电源才能维持正常工作。幸运的是,我们周围存在很多种能量形式,既可以把风能、光能、物体运动动能转换成电能,甚至从高频无线电信号的传输中也可以收集部分能量。这个世界的电子设备日益增多,在可能的情况下复用能量(比如RF、微波信号)就显得更有意义了,这样可以帮助提升整体能量使用效率。

太阳能可能是最为广为人知的能量采集方案了。特别对于那些只需要消耗少量电能的设备,使用较小太阳能电池板就可以将来自太阳的光能转换为可供设备所用的直流电压。

 


在一些人烟稀少的地区,人们常常看到居民住宅的房顶上铺满了大量太阳能电池板,这些能源可以作为当地电力公司的备用电源甚至是替代性电源。同样,在一些风量充足的开阔平原地带,比如美国的中西部地区,经常能够看到风力发电厂,将风这种“来去自由”的能量转换成电力。

如今,可以转换成直流电压形式电源的太阳光可能是最受人类欢迎的能源了。ADI公司、Silicon Laboratories和德州仪器等公司提供大量广泛的太阳能供电的无线收发器、振荡器和其他高频组件。此外,EnOcean开发了一系列使用太阳能作为电源的自供电开关,以及太阳能供电、在ISM频段上进行无线通信的IC。最近推出的相关产品是使用太阳能供电、用于蓝牙照明控制系统的空间占用传感器,它可以使用蓝牙低功耗(BLE)协议简化室内自动化应用的部署。

相比之下没有那么普遍但是正在迅速普及的则是从RF/微波信号中收集能量的方案,它可以从无线电/电视广播站和无线设备上获取能量。在物联网(IoT)传感器和射频识别(RFID)标签等低功耗应用中,这种能量收集方案可以替换电池。重复使用能量可以降低运营成本,并提高现有电子系统和设备的能源使用效率。

从RF/微波信号中收集能量是一个清晰明确的物理过程。可以使用包含无线电接收器和升压转换器等基本组件的集成电路,将来自一根天线上的RF信号能量转换成交流或直流电压,然后将这些电能传输到可充电电池或电容器等电能存储设备中。Vivaldi直接前向天线设计显示出卓越的优势,可以覆盖超宽带频段(比如100MHz-6GHz),并支持很多RF能量收集IC。

转换射频能量
Powercast公司的P2110B Powerharvester是一个典型的商用射频能量收集接收器,它可以把射频信号转换成直流电压形式(如图所示)。这是一款可以用在ISM频段较低频率区段(902至928 MHz)的接收器。

 



在一根天线的辅助下,P2110B可以处理-12至+10 dBm的RF输入电平,将其转换为直流电压,并将能量存储在电容器中,以供需要时使用。这么高的接收灵敏度使得它可以在距离RF信号源相当远的地方即能实现有效的能量收集。这款紧凑型器件只是当前可用的RF能量收集技术中的一个案例,它能帮助小型电子产品在没有电池的情况下正常工作。


P2110B内部有颗电容可以帮助执行受控的能量转换。在最大电流为50毫安的情况下,能量收集器可以把电压稳定在2V-5.5V范围内。当电容器累积电荷,超出高电压阈值时就能输出有效电压,当电荷低于低电压阈值时便会关断电压输出。正如制造商所建议的那样,可以将能量收集器和微处理器一起结合使用,利用微处理器的编程能力优化功率使用,并改善电子设备(比如传感器)的性能表现。

无限物联网传感器即将迎来快速增长,5G蜂窝网络也对远程无线传感器存在大量需求,在这样的背景下,能量收集无疑将会采用多种形式,包括光伏和热电形式。比利时能源收集集成电路公司e-peas半导体提供的AEM10940就是一颗从光伏获取能量的IC,它可以提供两路独立的稳态电压,帮助延长电池寿命,或者在电子系统中直接替代电池。

最近,该公司开发了两款从RF信号源提取能量的半导体器件,型号为AEM30940和AEM40940。这两款器件都集成了升压转换器,旨在从低功耗的ISM频段信号中提取能量,向电池或者电容器充电。AEM30940的射频输入水平可低至-18.2 dBm(863至868 MHz和915至921 MHz)、-14 dBm(2110至2170 MHz)和-9.5 dBm(2.4至2.5 GHz)。采用表面贴装封装,具有可简化不同工作模式的实现的配置引脚,并具备低压和高压封装引脚,可提供50mV至5V的全范围电压。

另一款器件AEM40940从RF信号源提取交流电能,产生两个可以独立调节的输出电压。它内部集成了一个低功率整流器和一个升压转换器,采用四方扁平封装,塑料外壳尺寸仅为5×5 mm。 它可用于ISM频段中的868 MHz、915 MHz和2.45 GHz,输入功率范围为-20至+10 dBm。该RF能量采集器具有相对较高的整体效率(测量路径为从输入端口到升压转换器的输出),在868和915 MHz频段,输入功率水平为-20到0 dBm时效率通常大于20%,在2.45 GHz频段,输入功率电平为-10至+5 dBm时效率通常大于10%。

现在有多种形式的能量收集设备,可以利用许多不同形式的能源,包括阳光、风、运动、热量,甚至可以从用户的身体热量中捕获微小的功率。每种能量收集方案的采集能力各不相同,相比之下,太阳能仍然是当下最受欢迎、也是最有效的能量收集形式。不过,随着全球范围内无限通信设备的日益普及,以及大多数人口密集地区充斥大量射频/微波信号能量,使用射频能量采集技术给低功耗电子设备(比如数以十亿计的物联网传感器)供电的应用越来越多,并将在未来几年中普及到世界各地。

 

与非网编译内容,未经许可,不得转载!

 

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
罗德与施瓦茨公司联合紫光展锐成功认证LTE终端能力等级1bis测试用例

罗德与施瓦茨公司(以下简称R&S公司)凭借其在移动通信领域的多年积累,联合紫光展锐科技有限公司(以下简称紫光展锐)成功验证通过新的UE能力等级1bis射频和无线资源管理一致性测试用例。

【技术分享】5G 基站射频指标的测试方案及其改进方案

本文介绍了5G关键技术对射频指标测试的影响,然后通过对3GPP标准的解读,分析传统测试在5G基站测试中的弊端,并通过分析得到目前的测试方法里能够适应5G 基站射频指标的测试方案及其改进方案。

【技术分享】矢量测试中的信号不平衡性分析

在射频测试中,矢量信号分析类的仪器应用广泛,例如,矢量信号分析仪中的I/Q信号和矢量网络分析仪中的S参数。

HF RFID技术如何解决行业痛点?带来哪些改变?

最近,物联网硬件解决方案商坤锐电子开发出一种新零售HF RFID解决方案,并迅速推出最新的新零售高频芯片QMars-5U。据坤锐技术开发员介绍,该方案由高灵敏度的读写器与多层天线阵列组成,通过高频RFID技术感应电子标签,可以实现1.2秒内快速、准确地读取所有商品的现存数量。

FPGA业务仅占营收的3%却成为10nm工艺第一批受益者,英特尔是怎么想的?
FPGA业务仅占营收的3%却成为10nm工艺第一批受益者,英特尔是怎么想的?

和过去几代产品相比,AMD近期推出的产品给了英特尔更为激烈的竞争压力,这将帮助AMD逐步超越英特尔;近几年来,英特尔一直深陷制造工艺升级泥潭,它最近发布的10纳米 FPGA表明它的10纳米工艺还有一些尚未得到解决的问题;AMD很有可能重现二十年前的辉煌,再次夺得CPU性能的铁王座。

更多资讯
2019年会成为MEMS激光雷达技术路线元年吗?

一直以来,MEMS激光雷达都被视为在自动驾驶领域最快落地的商业LiDAR技术路线。2019年过去了三分之一,MEMS激光雷达领域投资的新闻以及各家新品的推出,让我们强烈地感受其落地的脚步声越走越近。

Strategy Analytics观点:英特尔放弃5G调制解调器业务,高通和苹果和解

2019年4月16日,苹果和高通公司在美国联邦法院公开辩论的一天后宣布和解。 同时,英特尔还宣布打算退出智能手机蜂窝调制解调器市场。

【技术分享】一文读懂封装天线发展的来龙去脉
【技术分享】一文读懂封装天线发展的来龙去脉

封装天线(Antenna-in-Package, AiP)技术是过去近20年来为适应系统级无线芯片出现所发展起来的天线解决方案。如今AiP 技术已成为60GHz无线通信和手势雷达系统的主流天线技术。

RFID和物联网的发展,间接推动了车联网的发展?

根据Gartner 2019年4月5日的数据预测,明年将有2.5亿辆联网汽车上路。IHS Markit预测,到2023年,全球联网汽车的年销量将达到7250万辆,高于2015年的2400万辆。车联网是一个巨大的商业机会,行业也正为此做着越来越充分的准备。

【技术分享】什么时候该用波导,什么时候不该用波导,这篇文章把它讲明白了

波导互连器件和波导组件,多用于军事、航空航天、卫星通信、雷达、微波/毫米波成像、工业加热/烹饪等各种微波和毫米波应用。在这一类的应用中,或在其他特定环境下,布线空间的几何机构会造成采用硬波导组件或硬波导互连件在进行走线时出现成本过大,复杂程度过高高,或者刚度过强等问题。

Moore8直播课堂
开发板测评
技术讨论
电路方案

1970-01-01 08:00:00