从RF信号源上进行能量采集将成为物联网设备的标配?

2019-01-14 08:34:49 来源:EEFOCUS
标签:

工业和商业应用中的电子设备越来越多了,从RF收集能量作为电源的方案越来越普遍。

日常生活中的电子设备越来越多了,它们都需要某种形式的电源才能维持正常工作。幸运的是,我们周围存在很多种能量形式,既可以把风能、光能、物体运动动能转换成电能,甚至从高频无线电信号的传输中也可以收集部分能量。这个世界的电子设备日益增多,在可能的情况下复用能量(比如RF、微波信号)就显得更有意义了,这样可以帮助提升整体能量使用效率。

太阳能可能是最为广为人知的能量采集方案了。特别对于那些只需要消耗少量电能的设备,使用较小太阳能电池板就可以将来自太阳的光能转换为可供设备所用的直流电压。

 


在一些人烟稀少的地区,人们常常看到居民住宅的房顶上铺满了大量太阳能电池板,这些能源可以作为当地电力公司的备用电源甚至是替代性电源。同样,在一些风量充足的开阔平原地带,比如美国的中西部地区,经常能够看到风力发电厂,将风这种“来去自由”的能量转换成电力。

如今,可以转换成直流电压形式电源的太阳光可能是最受人类欢迎的能源了。ADI公司、Silicon Laboratories和德州仪器等公司提供大量广泛的太阳能供电的无线收发器、振荡器和其他高频组件。此外,EnOcean开发了一系列使用太阳能作为电源的自供电开关,以及太阳能供电、在ISM频段上进行无线通信的IC。最近推出的相关产品是使用太阳能供电、用于蓝牙照明控制系统的空间占用传感器,它可以使用蓝牙低功耗(BLE)协议简化室内自动化应用的部署。

相比之下没有那么普遍但是正在迅速普及的则是从RF/微波信号中收集能量的方案,它可以从无线电/电视广播站和无线设备上获取能量。在物联网(IoT)传感器和射频识别(RFID)标签等低功耗应用中,这种能量收集方案可以替换电池。重复使用能量可以降低运营成本,并提高现有电子系统和设备的能源使用效率。

从RF/微波信号中收集能量是一个清晰明确的物理过程。可以使用包含无线电接收器和升压转换器等基本组件的集成电路,将来自一根天线上的RF信号能量转换成交流或直流电压,然后将这些电能传输到可充电电池或电容器等电能存储设备中。Vivaldi直接前向天线设计显示出卓越的优势,可以覆盖超宽带频段(比如100MHz-6GHz),并支持很多RF能量收集IC。

转换射频能量
Powercast公司的P2110B Powerharvester是一个典型的商用射频能量收集接收器,它可以把射频信号转换成直流电压形式(如图所示)。这是一款可以用在ISM频段较低频率区段(902至928 MHz)的接收器。

 



在一根天线的辅助下,P2110B可以处理-12至+10 dBm的RF输入电平,将其转换为直流电压,并将能量存储在电容器中,以供需要时使用。这么高的接收灵敏度使得它可以在距离RF信号源相当远的地方即能实现有效的能量收集。这款紧凑型器件只是当前可用的RF能量收集技术中的一个案例,它能帮助小型电子产品在没有电池的情况下正常工作。


P2110B内部有颗电容可以帮助执行受控的能量转换。在最大电流为50毫安的情况下,能量收集器可以把电压稳定在2V-5.5V范围内。当电容器累积电荷,超出高电压阈值时就能输出有效电压,当电荷低于低电压阈值时便会关断电压输出。正如制造商所建议的那样,可以将能量收集器和微处理器一起结合使用,利用微处理器的编程能力优化功率使用,并改善电子设备(比如传感器)的性能表现。

无限物联网传感器即将迎来快速增长,5G蜂窝网络也对远程无线传感器存在大量需求,在这样的背景下,能量收集无疑将会采用多种形式,包括光伏和热电形式。比利时能源收集集成电路公司e-peas半导体提供的AEM10940就是一颗从光伏获取能量的IC,它可以提供两路独立的稳态电压,帮助延长电池寿命,或者在电子系统中直接替代电池。

最近,该公司开发了两款从RF信号源提取能量的半导体器件,型号为AEM30940和AEM40940。这两款器件都集成了升压转换器,旨在从低功耗的ISM频段信号中提取能量,向电池或者电容器充电。AEM30940的射频输入水平可低至-18.2 dBm(863至868 MHz和915至921 MHz)、-14 dBm(2110至2170 MHz)和-9.5 dBm(2.4至2.5 GHz)。采用表面贴装封装,具有可简化不同工作模式的实现的配置引脚,并具备低压和高压封装引脚,可提供50mV至5V的全范围电压。

另一款器件AEM40940从RF信号源提取交流电能,产生两个可以独立调节的输出电压。它内部集成了一个低功率整流器和一个升压转换器,采用四方扁平封装,塑料外壳尺寸仅为5×5 mm。 它可用于ISM频段中的868 MHz、915 MHz和2.45 GHz,输入功率范围为-20至+10 dBm。该RF能量采集器具有相对较高的整体效率(测量路径为从输入端口到升压转换器的输出),在868和915 MHz频段,输入功率水平为-20到0 dBm时效率通常大于20%,在2.45 GHz频段,输入功率电平为-10至+5 dBm时效率通常大于10%。

现在有多种形式的能量收集设备,可以利用许多不同形式的能源,包括阳光、风、运动、热量,甚至可以从用户的身体热量中捕获微小的功率。每种能量收集方案的采集能力各不相同,相比之下,太阳能仍然是当下最受欢迎、也是最有效的能量收集形式。不过,随着全球范围内无限通信设备的日益普及,以及大多数人口密集地区充斥大量射频/微波信号能量,使用射频能量采集技术给低功耗电子设备(比如数以十亿计的物联网传感器)供电的应用越来越多,并将在未来几年中普及到世界各地。

 

与非网编译内容,未经许可,不得转载!

 

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
5G 大战真的是中国领先?厂商们为何受制于技术干着急?
5G 大战真的是中国领先?厂商们为何受制于技术干着急?

在5G大战中,国产5G基带芯片的批量尚华为、紫光展锐、中兴等企业纷纷占据前沿阵地,海外企业则只有高通、三星、苹果(收购英特尔5G基带业务)在做5G基带芯片。

芯禾科技进入Yole 最新5G射频前端研究报告

近日,半导体行业著名产业研究机构Yole发布了《5G对手机射频前端模组和连接性的影响2019》的最新报告,详细分析和预测射频前端市场的现状及发展趋势。芯禾科技在集成无源器件(Integrated Passive Device, IPD)滤波器领域经过多年耕耘,首次在该报告中被定义为IPD滤波器领先提供商,在全球5G射频前端供应链中扮演重要

通讯技术世代变革,手机射频如何发展?
通讯技术世代变革,手机射频如何发展?

通讯世代从 2G 发展到 4G,每一代的蜂窝技术都出现不同面貌的革新。从 2G 到 3G 增加接收分集技术,3G 到 4G 则增加载波聚合,再到 4.5G 时则是增加超高频,4x4 MIMO,更多的载波聚合。

皇冠上的明珠:射频前端格局解析
皇冠上的明珠:射频前端格局解析

目前, 智能手机支持30多个频段,预计5G时代全球2G/3G/4G/5G网络合计支持的频段将达到91个以上。随着5G普及商用,射频前端的需求量将呈暴发式增长……

成都站 · 正式报名通道开启 | EDA365-电子硬件技术研讨会

成都站 · 正式报名通道开启

更多资讯
*ST凡谷摘帽,和5G有什么关系?

与非网8月14日讯,射频器件对于5G来说重要性显而易见,近期*ST凡谷也成功“摘帽”,撤销了退市风险警示,并在昨日成功涨停。

大联大世平集团推出基于TI产品的77G毫米波感测模块之人员计数解决方案

2019年8月13日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下世平推出基于德州仪器(TI)IWR 1642的77G毫米波感测模块之人员计数解决方案。

5G 全球拉开落地大幕,其中的射频技术如何做好?

当年初还有媒体还在怀疑5G在全球落地进展可能并不如预期时,韩国和美国很快就争先恐后在4月宣布5G正式商用迅速揭开5G行业落地的大幕。而近日中国工信部向中国电信、中国移动、中国联通、中国广电正式发放5G商用牌照,更被认为是全球5G发展的标志性事件。

从 2G 到 4G,这些射频知识你不得不知

通讯世代从2G 发展到4G,每一代的蜂窝技术都出现不同面貌的革新。从2G 到3G 增加接收分集技术,3G 到4G 则增加载波聚合,再到4.5G 时则是增加超高频,4x4 MIMO,更多的载波聚合。

本土射频厂商还有多少机会?
本土射频厂商还有多少机会?

国外射频厂商起步早,掌握着最先进的核心技术,拥有强大的解决方案经验与资源,面对如此强劲的对手和新兴产业链环境,从优劣势出发分析本土射频厂商仅存的机会。