射频前端市场机在哪里?有哪些代表性企业?

2019-07-17 14:35:59 来源:芯师爷
标签:

射频前端是无线连接的核心,随着5G支持的频段数量的增多,单个移动终端射频前端的数量和价值量也会迎来显著增长,未来射频前端市场增长空间广阔。为此,我们将为大家深度解读射频前端的产业现状、市场空间及代表性企业!

 

射频半导体行业现状

1.1 射频前端芯片市场竞争格局有望改变

1.1.1 射频前端:无线连接的核心

终端设备的无线通信模块主要分为天线、射频前端模块(RF FEM)、射频收发模块、以及基带信号处理器四部分。其中射频前端是无线连接的核心,是在天线和射频收发模块间实现信号发送和接收的基础零件。

 

射频前端芯片主要是实现信号在不同频率下的收发,包括射频功率放大器(PA)、射频低噪声放大器(LNA)、射频开关、滤波器、双工器等。目前射频前端芯片主要应用于手机和通讯模块市场、WiFi路由器市场和通讯基站市场等。

 

 

 

射频前端芯片市场规模主要受移动终端需求的驱动。近年来,随着移动终端功能的逐渐完善,手机、平板电脑等移动终端的出货量持续上升,而射频前端的市场规模也随之上升。根据 Gartner 统计,包含手机、平板电脑、超极本等在内的移动终端的出货量从2012年的22亿台增长至2017年的23亿台,预计未来保持稳定。

 

 

终端消费者对移动智能终端需求大幅上升的原因,主要是移动智能终端已经成为集丰富功能于一体的便携设备,通过操作系统以及各种应用软件满足终端用户网络视频通信、微博社交、新闻资讯、生活服务、线上游戏、线上视频、线上购物等绝大多数需求。

 

随着 5G 商业化的逐步临近,5G标准下现有的移动通信、物联网通信标准将进行统一,因此未来在统一标准下射频前端芯片产品的应用领域会被进一步放大。同时,5G下单个智能手机的射频前端芯片价值亦将继续上升,预计未来射频前端市场也会继续保持增长。

 

根据QYR Electronics Research Center的统计,从2010年至2018年全球射频前端市场规模以每年约13%的速度增长,2018年达149.10亿美元,未来将以 13%以上的增长率持续高速增长,2020年接近190亿美元。

 

目前正是4G网络向5G网络转型升级的阶段,未来全球射频前端市场规模将迎来大规模扩张。预计2023年全球射频前端市场规模将增长至313.10亿美元。

 

 

根据YOLE的统计数据,2018年全球RF FEM(射频前端模块)消费量为96亿个,预计未来随着5G的不断发展,2023年全球RF FEM消费量将增长至135亿个。

 

 

 

射频器件主要包括射频开关和LNA,射频PA,滤波器,射频天线调谐器和毫米波FEM等。根据YOLE的统计数据,2017年全球射频器件市场中,滤波器市场占比约53.3%,射频PA市场占比约为33.3%,而射频开关约为6.7%,射频天线调谐器约为3.1%,LNA约为1.6%。

 

 

1.1.2 滤波器:射频器件最大的细分市场

射频滤波器包括声表面滤波器(SAW,SurfaceAcousticWave)、体声波滤波器(BAW,Bulk Acoustic Wave)、MEMS滤波器、IPD(Integrated Passive Devices)等。SAW和BAW滤波器是目前手机应用的主流滤波器。

 

SAW滤波器的基本结构由压电材料衬底和2个 IDT(Interdigital Transducer)组成。IDT是叉指换能器——交叉排列的金属电极。下图中左边的IDT把电信号转成声波,右边IDT把声波转成电信号。

 

SAW滤波器频率上限为2.5~3GHz。频率高于1.5GHz时,其选择性降低。在约2.5GHz处,其仅限于对性能要求不高的应用,而且SAW滤波器易受温度变化的影响。未来SAW滤波器的发展趋势是小型片式化、高频宽带化、降低插入损耗以及降低成本。

 

 

BAW滤波器更适合于高频,同时对温度变化不敏感,具有插入损耗小、带外衰减大等优点。BAW是3D腔体结构,能量损失小,Q值高,滤波效果更好,尤其适用于2GHz以上之频段,对于5G sub-6G U有明显优势。

 

 

BAW滤波器制造工艺步骤是SAW的10倍,但因其在更大晶圆上制造的,每片晶圆产出的BAW器件也多了约4倍。尽管如此,BAW的成本仍高于SAW。

 

BAW滤波器一般工作在1.5~6.0GHz,因此在3G/4G智能手机内所占的份额迅速增长。但并不意味着SAW滤波器完全失去市场。二者会分别在中高频和低频发挥各自优势并在一段时间并存。2GHz以下SAW的市场占有率仍比较大,2GHz以上BAW的市场占有率会比较高。

 

 

滤波器是射频前端市场中最大的业务板块。根据YOLE的报告显示,滤波器全球市场规模将从2017年的约80亿美元增长至2023年的225亿美元,CAGR达19%,市场空间广阔。

 

滤波器是射频器件潜力最大的市场之一,滤波器的市场的驱动力来自于新型天线对额外滤波的需求,以及多载波聚合(CA)对更多的体声波(BAW)滤波器的需求。根据观研天下的预测,在3G向5G演进的过程中,滤波器的单机价值量将成倍增长。3G设备的滤波器单机价值为1.25美元,4G设备为4美元,而到了5G时代预计将达到10美元以上。

 

 

随着手机的频段不断增加,所需滤波器的需求量也成正比上升。Skyworks预计2020年5G应用支持的频段数量将翻番,新增50个以上通信频段,全球2G/3G/4G/5G网络合计支持的频段将达到91个以上。频段数上升将带来射频滤波器使用数量增多。理论上每增加一个频段需增加2个滤波器。由于滤波器集成于模组,二者并不是简单的线性增加的关系。

 

在5G时代为了实现高带宽,载波聚合技术的路数必须上升。载波聚合技术是指使用多个不相邻的载波频段,每个频段各承载一部分的带宽,这样总带宽就是多个载波带宽之和。目前载波聚合技术在4G已经得到了广泛应用。载波聚合路数的上升也意味着频带数量的上升,从而催生出对更多滤波器的需求。

 

目前全球SAW和BAW滤波器市场均被国际巨头垄断。在SAW滤波器市场,前五大厂商(Murata、TDK、TAIYO YUDEN、Skyworks、Qorvo)占据了95%的全球市场;而在BAW滤波器市场中,仅Broadcom-Avago一家就占据了87%的全球市场份额,而且全球市场均被国外大厂垄断。目前国内尚无大批量生产和出货的射频滤波器的企业。

 

 

SAW滤波器可满足约1.5GHz以内的频率使用,BAW滤波器则可应用于更高频率。SAW滤波器无法满足高频段的使用条件,因此BAW滤波器成为市场新焦点,是未来5G时代发展的主要方向,但是技术难度也较大,因此国内厂商目前主要布局还是在SAW滤波器,BAW滤波器还处于研发阶段。

 

目前国内布局SAW滤波器的企业有麦捷科技、瑞宏科技、信维通信、中电德清华莹、华远微电、无锡好达电子等,虽取得一定进展,但在大批量生产和出货能力方面仍有追赶空间。但是由于射频芯片市场的投入相对较小,因此是一个很好的尝试点和突破口,国产滤波器有望实现突破。

 

 

1.1.3 射频PA:国外巨头占据主导地位

射频功率放大器(PA)是射频系统的关键模块,它需要把发射机的低功率信号放大到足够大,才能满足通讯协议的要求。PA直接决定了手机无线通信的距离、信号质量,甚至待机时间,是射频系统中的重要部分。

 

随着无线通讯协议的发展,数据率越来越高,同时无线调制方式也越来越复杂,手机频段持续增加,PA的数量也随之增加。根据StrategyAnalytics的数据,4G多模多频手机所需PA芯片5~7颗,预计5G时代手机内的PA或多达16颗。而根据YOLE的报告显示,2017年全球射频PA市场为50亿美元,预计随着5G的推广,2023年射频PA全球市场将达到70亿美元,CAGR为7%。

 

全球PA市场绝大部分份额被Skyworks、Qorvo、Broadcom、Murata占据,合计市场份额为96%。

 

 

国内的射频PA厂商也正在兴起。国内的射频PA设计公司(Fabless)有近20家,主要有汉天下、唯捷创芯、紫光展锐等。国内晶圆代工厂商主要有三安光电、海特高新等,国产射频PA有望实现突破。

 

 

1.1.4 射频开关和LNA:未来市场空间广阔

由于移动通讯技术的变革,智能手机需要接收更多频段的射频信号,对于射频开关的需求也随之提升。根据 Yole Development 的总结,2011 年及之前智能手机支持的频段数不超过 10 个,而随着 4G 通讯技术的普及,至 2016 年智能手机支持的频段数已经接近 40 个;因此,移动智能终端中需要不断增加射频开关的数量以满足对不同频段信号接收、发射的需求。

 

根据QYR Electronics Research Center的统计,2010年以来全球射频开关市场经历了持续的快速增长,2018年全球市场规模达到16.54亿美元,随着 5G 商业化的推进,预计2020年市场规模将达到 22.90亿美元。2018-2023年间,全球射频开关市场规模的年复合增长率预计达 16.55%。

 

 

随着移动通讯技术的变革,移动智能终端对信号接收质量提出更高要求,需要对天线接收的信号放大以进行后续处理。一般的放大器在放大信号的同时会引入噪声,而射频低噪声放大器能最大限度地抑制噪声,因此得到广泛的应用。

 

根据QYR Electronics Research Center的统计,2018 年,全球射频低噪声放大器(LNA)市场规模已达 14.21 亿美元。随着4G的普及,智能手机中天线和射频通路的数量增多,对射频低噪声放大器的数量需求迅速增加,因此预计在未来几年将持续增长,到2020年,其市场规模将在5G商业化建设迎来发展高峰,在2023年达17.94亿美元。

 

 

1.1.5 射频前端市场:国外大厂垄断,国内厂商突围

现阶段,全球射频前端芯片市场主要被国外大厂占据。射频前端芯片的主要欧美日传统大厂包括Broadcom、Skyworks、Qorvo、Murate等。全球射频前端市场集中度较高,前四大厂商合计占据全球85%的市场。

 

 

从国际竞争力来讲,国内的射频设计水平还处在中低端。例如国内的PA和射频开关相关厂商,射频芯片厂商销售额大约3亿美金。全球PA和开关射频产品需求金额大约60亿美金。可见,国内厂商依然在起步阶段,市场话语权有限;滤波器方面,国内厂商销售总额不到1亿美金,全球市场需求在90亿美金。

 

 

国内射频芯片产业链已经基本成熟,从设计到晶圆代工,再到封测,已经形成完整的产业链。而行业内也涌现出了一批射频前端新兴企业,例如锐迪科、国民飞骧、唯捷创芯、韦尔股份、卓胜微等。

 

1.2 射频前端产业链日趋成熟

射频前端半导体产业链生态将迎来新的变化,推动产业链公司迎新机遇。目前射频前端半导体产业由IDM模式主导。射频前端主要产品的市场均被几大国际巨头垄断。随着5G到来,以高通为代表的Fabless厂商试图凭借基带技术切入射频前端领域;同时以华为为代表的设备商对于上游供应链的把控和“国产替代”需求也将重塑产业链格局,国内设计厂商有望迎来替代机遇,我们看好未来射频前端的国产替代逻辑。

 

1.2.1 IDM模式仍为行业主流

射频前端产业链根据分工的不同可以分为芯片设计、晶圆制造和封装测试三个环节。而 IDM(Integrated Device Manufacturing,垂直整合制造)模式是指垂直整合制造商独自完成集成电路设计、晶圆制造、封测的所有环节,因此该模式对技术和资金实力均有很高的要求,所以目前只有国际上成功的大型企业采纳IDM模式,如Skyworks、Qorvo、Murata、Broadcom等。

 

1987 年台湾积体电路公司(TSMC)成立以前,集成电路产业只有IDM一种模式,此后,半导体产业的专业化分工成为一种趋势。出现垂直分工模式的根本原因是半导体制造业的规模经济性。但是现今IDM 厂商仍然占据主要地位,主要是因为IDM 企业具有资源的内部整合优势、技术优势以及较高的利润率:

 

1. 资源的内部整合优势。在IDM 企业内部,从IC 设计到完成IC制造所需的时间较短,主要的原因是不需要进行硅验证(SiliconProven),不存在工艺流程对接问题,所以新产品从开发到面市的时间较短。而在垂直分工模式中,由于Fabless 在开发新产品时,难以及时与Foundry 的工艺流程对接,造成一个芯片从设计公司到代工企业的流片(晶圆光刻的工艺过程)完成往往需要6-9 个月,延缓了产品的上市时间。

 

2. 技术优势。大多数IDM 都有自己的IP(Intellectual Property,知识产权)开发部门,经过长期的研发与积累,企业技术储备比较充足,技术开发能力很强,具有技术领先优势。

 

3. 较高的利润率。根据“微笑曲线”原理,最前端的产品设计、开发与最末端的品牌、营销具有最高的利润率,中间的制造、封装测试环节利润率较低。

 

 

目前射频前端行业仍然以IDM模式为主导。射频与功率器件集成度不高,设计变化不多,设计环节附加值较低,而且材料结构与工艺密切相关,而工艺又决定了产品最终的电学性能,材料、设计、制造与封测一体相关,这几个因素是射频器件竞争的主导性因素。所以全球成功的射频或功率器件公司,多数都采用IDM模式。

 

随着通信技术的不断发展,手机等移动终端对于射频前端的要求也越来越高。一方面,手机等终端需要的射频前端的数量在上升,射频前端在手机成本的比重也越加上升;另一方面,随着对便携性和轻薄化的要求越来越高,而需求的射频前端数量也在不断增长,这时射频前端厂商只能增加集成度以把整个射频系统的实际尺寸控制在合适的范围内。

 

目前,已经有一些厂商在研发把低噪声放大器和开关模组集成在一起的方案,例如Skyworks的SkyOne模组(集成了PA,开关,多路器在同一模组上)。未来随着通信技术和生产工艺的不断发展,我们可望看到集成度更高的射频前端。

 

 

射频前端行业兼并收购不断,巨头不断扩大业务版图。越来越多的厂商也在纷纷加大在射频前端方面的投入,希望在未来的5G浪潮中分一杯羹。例如联发科计划收购络达科技布局射频PA,紫光展讯整合锐迪科买入射频PA行业,而国际巨头Skyworks联手松下组建合资公司开发SAW滤波器,而巨头Qorvo则由主营滤波器的RFMD和主营射频PA的Triquint合并而成。

 

有很多特殊的半导体产品适用IDM而不是代工模式,例如模拟器件。模拟器件和数字器件不一样。数字器件的敏感度一般来说不那么高,它追求摩尔定律,要求线宽越来越小、功耗越来越少、成本越来越低,而单位面积上晶体管的数目要越来越多,它需要最先进的工艺和技术。

 

模拟器件则非常敏感,只要一个参数有变化,整体功能就会改变很多。譬如模拟器件里面的一个电容或电感的尺寸,稍微大一点或者小一点效果就会差很多。所以模拟器件更需要有一条专门为它服务的生产线。

 

混合信号、模拟和功率半导体器件都不需要使用7纳米、14纳米的工艺,它需要的是稳定性和可靠性,需要对它的工艺流程进行量身定做,因此很多模拟器件是没有代工工厂(Foundry)的,譬如5G通讯中用到的氮化镓(GaN),目前这种高功率芯片的大企业有Skyworks(思佳讯)、Qorvo、Sumitomo(住友)、Murata(村田)、NXP(恩智浦)、AVAGO(安华高)等,都是IDM公司。

 

射频前端产业目前是IDM模式最成功的领域。就在其它半导体芯片市场(如处理器、SoC等)Fabless模式占据大半江山的时候,在射频前端市场仍然是IDM独大,这是因为射频前端设计需要仔细结合器件制造工艺,有时候甚至会为了设计而调整工艺。目前射频前端领域的巨头Skyworks, Qorvo等都有自己的生产线,随着未来5G时代对射频前端器件的要求越来越高,制造工艺越来越复杂,预计IDM模式仍然将在未来的射频前端行业占据主导地位。

 

1.2.2 “基带供应商切入射频前端市场+整机商把控供应链国产替代”,Fabless迎来发展机遇

IDM模式虽然有这么多的好处,但是IDM模式最大的局限就在于对市场的反应不够迅速。由于IDM 企业的“质量”较大,所以“惯性”也大,因此对市场的反应速度会比较慢。其次,半导体产业所需的投资十分巨大,沉没成本高。晶圆生产线投资较大,而且每年的运行保养、设备更新与新技术开发等成本占总投资的比例较高。这意味着除了少数实力强大的IDM厂商有能力扩张外,其他的厂商根本无力扩张,因此便催生出了Fabless模式。

 

在Fabless模式下,集成电路设计、晶圆制造、封测分别由专业化的公司分工完成,此模式中主要参与的企业类型有芯片设计厂商、晶圆制造商、外包封测企业。采用Fabless模式的公司处于产业链上游,技术密集程度高,芯片设计厂商在该种模式下起到龙头作用,统一协调芯片设计后的生产、封测与销售。

 

 

高通借助基带技术优势,涉足5G射频模组,产业秩序面临改变。RFIC巨头高通和射频前端大厂TDK合资成立了RF 360,使得高通拥有了提供从基带Modem SoC,RFIC到射频前端完整解决方案的能力。

 

高通于2018年推出全球首款5G毫米波天线模组QTM052,该模组包含毫米波IC、1x4天线阵列、射频收发器(transceiver)、电源管理IC、射频前端元件(放大器、滤波器、低杂讯放大器.等),并采用AiP(Antenna in Package)封装技术,使得模组宽度仅约1美分硬币的1/3宽,其搭配高通5G Modem(X50)晶片,获得优异的射频性能表现,可大幅简化手机系统厂商需面对的复杂射频通讯设计问题,预计此模组将用在三星(S10)、Sony、LG、小米、OPPO、Google等2019年的5G手机上。

 

目前Qorvo、Broadcom、Skyworks主要占据4G LTE/Sub-6G领域,而高通则选择深耕5G毫米波市场,并不断拉大与竞争对手的差距。预计高通的进入将深刻地改变射频前端产业秩序。

 

 

同时,以华为为代表的设备商对于上游供应链的把控和“国产替代”需求也将重塑产业链格局,国内设计厂商有望迎来替代机遇,我们看好未来射频前端的国产替代逻辑。国内射频器件的生产厂商以Fabless为主,在代工厂工艺的挹注下,产业链将迎来加速国产替代的机遇。目前国内代表公司有海思半导体,卓胜微,VanChip,Ampleon,慧智微等。

 

5G赋能射频前端产业

射频前端芯片是移动智能终端产品的核心组成部分,追求低功耗、高性能、低成本是其技术升级的主要驱动力,也是芯片设计研发的主要方向。

 

射频前端芯片与处理器芯片不同,后者依靠不断缩小制程实现技术升级,而作为模拟电路中应用于高频领域的一个重要分支,射频电路的技术升级主要依靠新设计、新工艺和新材料的结合。

 

由于5G时代对用户体验速率、连接数密度、端到端时延、流量密度、移动性和峰值速率等提出了更高的要求,所以对射频前端芯片也提出了更高的要求,只有抓住了新工艺和新材料等关键升级路线,才能享受5G时代带来的高速增长红利。因此我们应该重点关注射频前端的新材料氮化镓(GaN)和前沿的封装技术SiP/AiP。

 

2.1 氮化镓:未来5G射频前端新秀

2.1.1 氮化镓:性能优异的第三代半导体材料

半导体材料共经历了三个发展阶段:

1. 第一阶段是以Si、Ge为代表的第一代半导体材料

2. 第二阶段是以GaAs、InP等化合物为代表的第二代半导体材料

3. 第三阶段是以GaN、Sic、ZnSe等宽禁带半导体材料为主的第三代半导体材料

 

其中,第三代半导体材料具有很多优异于第一和第二代半导体材料的性能特点:第一,具有较大的禁带宽度,较高的击穿电压,耐压性能较好,更适合应用大功率领域;第二电子饱和速率较高,弥补了电子迁移率的缺陷;第三高温性能良好,减少了附加散热系统的设计成本;第四,发展前景广阔,在高频、高温、大功率等领域有很大发展潜力。因此氮化镓(GaN)凭借其优异的性能而成为目前研究的热点内容。

 

 

正是由于氮化镓优异的性能,目前氮化镓已经成为射频器件(RF)、LED和功率器件等的应用热点,尤其是氮化镓同时可以满足高功率和高频率的特点,并且在高频下拥有更高的功率输出和更小的占位面积,目前已经成为射频器件应用的热点和最优选择之一。

 

 

 

当前基站与无线回传系统中使用的大功率射频器件(功率大于3瓦),主要有基于三种材料生产的器件,即传统的LDMOS(横向扩散MOS)、砷化镓(GaAs),以及新兴的氮化镓(GaN)。

 

根据Yole的预测,未来5到10年,砷化镓在大功率射频器件市场上所占比例基本维持稳定,但LDMOS与氮化镓将呈现出此消彼长的关系。2025年,LDMOS占比将由现在的40%左右下降到15%,而氮化镓将超越LDMOS和砷化镓,成为大功率射频器件的主导工艺,占比到2025年可达45%左右。

 

 

氮化镓是拥有宽禁带的材料,其禁带宽度(3.4eV)是普通硅(1.1eV)的3倍,击穿电场是硅材料的10倍,功率密度高,可以提供更高的工作频率、更大的带宽、更高的效率,可工作环境温度也更高。由于成本优势,LDMOS在低频仍有生存空间,但氮化镓已经在向低频渗透,例如在2.6GHz频段,也开始出现氮化镓方案。

 

由于工艺输出功率特性限制,LDMOS在3.5GHz及以上频率不能提供足够大的功率,所以从3.5GHz到未来的毫米波,高频应用中氮化镓不是去替代LDMOS,而是开辟全新的市场空间。氮化镓拥有全面的优势,无论是带宽、线性度、增益还是效率,硅器件都无法与氮化镓竞争。

 

根据Compound Semiconductor的预测,预计2018年开始GaN的出货量将超过LDMOS,通信市场氮化镓的应用前景广阔。

 

 

随着通信技术不断向高频演进,氮化镓是必然的选择。因为需要更大的带宽,更好的线性度,5G和高频化应用,让氮化镓大有用武之地。在5G时代,未来一台基站里面就要用几百个PA(功率放大器),而5G的基站部署数量将呈指数形式增长,所以在5G时代,射频器件产业将比以往大得多。

 

 

2.1.2 硅基氮化镓(GaN-on-Si):最有前景的衬底技术

目前来看,GaN主要有三种类型的衬底,分别是硅基、碳化硅(SiC)衬底和金刚石衬底。

 

金刚石衬底氮化镓(GaN-on-Diamond):制造较为困难,但是优势明显:在世界上所有材料中金刚石的热导率最高(因此最好能够用来散热)。使用金刚石代替硅、碳化硅、或者其他基底材料可以把金刚石高导热率优势发挥出来,可以实现非常接近芯片的有效导热面。

 

碳化硅衬底氮化镓(GaN-on-SiC):这是射频氮化镓的“高端”版本,SiC衬底氮化镓可以提供最高功率级别的氮化镓产品,可提供其他出色特性,可确保其在最苛刻的环境下使用,但是成本相对较高。

 

硅基氮化镓(GaN-on-Si):这种方法比另外两种良率都低,不过它的优势是可以使用全球低成本、大尺寸CMOS硅晶圆和大量射频硅代工厂。因此,它可以以价格为竞争优势对抗现有硅和砷化镓技术,从而实现对现有市场份额的替代。

 

 

GaN-on-SiC目前主导了RF GaN行业,已渗透到4G LTE无线基础设施市场,预计将部署在5G sub-6Ghz的RRH架构中。与此同时,经济高效的LDMOS技术也取得了显著进步,可能会对5G sub-6Ghz有源天线和大规模多输入多输出(MIMO)应用中的GaN解决方案发起挑战。不过,这可能需要以降低效率为代价,从而带来功耗的增加,对于5G的大规模部署来说是不可持续的。

 

GaN-on-SiC是以性能为导向的,而GaN-on-Si作为潜在的挑战者是以成本为导向的,并且可以满足更大的出货量需求。根据YOLE的报告预计,GaN-on-Si可以基于全球现有的低成本、大尺寸CMOS硅晶圆和大量射频硅代工厂实现更快的大规模量产,硅基氮化镓器件工艺能量密度高、可靠性高,晶圆可以做得很大,目前在8英寸,未来可以做到10英寸、12英寸,晶圆的长度可以拉长至2米。

 

硅基氮化镓器件具有击穿电压高、导通电阻低、开关速度快、零反向恢复电荷、体积小和能耗低、抗辐射等优势。针对RF产品更易于扩展,未来GaN-on-Si将广泛应用于手机、射频器件、VSAT等领域。随着5G技术的不断推进和渗透率的不断提升,YOLE预计未来GaN-on-Si的市场份额将超过GaN-on-SiC。

 

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
Soitec 发布 2020 财年第一季度报告

北京,2019年8月23日——作为设计和生产创新性半导体材料的全球领军企业,法国Soitec半导体公司公布了2020财年第一季度财报(截止至2019年6月30日)。

屏幕创新成了5G终端的创新热点?技能树有没有点“歪”?

5G时代中,可弯曲、折叠的屏幕是智能终端发展的一个重要趋势,而实现这种新形态的终端,屏幕厂商可谓功不可没。

Strategy Analytics:尽管对5G的兴趣浓厚,美国智能手机用户换机周期延长至33个月

Strategy Analytics最新发布的研究报告《美国智能手机换机率和品牌动态》指出,苹果智能手机用户目前平均使用其手机18个月而三星为16.5个月。 五分之一的白人计划使用他们的手机3年或更长,而越来越多的55-64岁的用户推迟其购机周期超过3年。

国内工业机器人洗牌将至,如何才能实现“弯道超车”?
国内工业机器人洗牌将至,如何才能实现“弯道超车”?

最近几年间,工业机器人在全球范围内都呈现出快速增长的趋势。

更多资讯
风雨二十年,罗森伯格们经历了什么?

罗森伯格源自德国巴伐利亚,是一家拥有六十余年历史的国际知名无线射频和光纤通信技术制造商。

春兴精工遭深交所发问询函,2019年上半年业绩因何下滑?

与非网8月21日讯,作为打入华为供应链的国产射频器件生产厂商,春兴精工最近公布了2019年半年报。

将相控阵雷达系统移到集成电路中是怎样的体验?
将相控阵雷达系统移到集成电路中是怎样的体验?

相控阵雷达系统利用多个发射和接收通道来实现正常运行。以前,这些平台在构造时都使用分立的发射和接收集成电路(IC)。

净利同比下降六成多,大族激光何去何从?

挖贝网 8月19日消息,那个怼央视记者“你是什么角色?你有什么资格质问我?这是我们的资金,我当然有权利做任何经营决策,你管我那么多?”的上市公司大族激光公布了半年报,上半年净利润同比降了六成多,仅有3.79亿,而去年同期为10.18亿。

*ST凡谷摘帽,和5G有什么关系?

与非网8月14日讯,射频器件对于5G来说重要性显而易见,近期*ST凡谷也成功“摘帽”,撤销了退市风险警示,并在昨日成功涨停。