PCB 材料对微带线和接地共面波导电路产生得影响分析

2019-09-05 12:53:35 来源:电子发烧友网
标签:

在为某一电路设计选择最优PCB材料时,高频电路设计者通常需考虑电路的性能变化、物理尺寸和功率高低。不同传输线技术的选择会影响电路设计的最终性能,如使用微带线或是接地共面波导(GCPW)。大部分设计者都了解高频微带线和带状线的明显区别,但接地共面波导与传统微带线有很多的不同。接地共面波导能为高频电路设计者的设计带来了许多好处和便利。选择不同电路时,了解不同PCB材料对微带线和接地共面波导电路的影响对设计是非常有帮助的。下图中可以看到两种电路的不同结构。

 

图1:同种结构对比图

 

我们可以看到:微带线电路的结构是信号导体线加工在介质层的顶部,接地导体面在介质层的底部。而接地共面波导结构中,除了介质层底部有的接地平面外,在介质层顶部,增加了额外的两个地平面并使信号导体处于这两个地平面中,且相互间隔。通过金属填充过孔使顶部和底部的接地平面相连接实现了一致的接地性能。此外,为保证如接合处等电路不连续处的一致性,许多接地共面波导电路通过接地母线来实现两顶层接地导体间的电气连接。

 

两种传输线技术的不同之处在于:接地共面波导中,顶层接地导体和信号导体之间的小间距可以实现电路的低阻抗,且通过调节该间距可以改变电路的阻抗。接地导体和信号导体的间距增大,阻抗也会增大。当接地共面波导的顶层接地导体和信号导体的间距增大时,接地导体对电路的影响会降低。当间距足够大时,接地共面波导电路就类似于微带线电路了。

 

为什么某种传输线比其他传输线技术有优势呢?很明显,相比于接地共面波导,微带线结构简单,这更加便于加工和电脑建模。微带线和带状线是微波波段最常用的传输线技术,但在毫米波频段时,微带线和带状线电路的损耗将增加。这使得这两种传输线技术在30GHz及以上频段的工作效率降低。但接地共面波导则具有牢固的接地结构,在高频频段具备更低的损耗。这为毫米波频段甚至100GHz及以上频段的设计提供了潜在的优势和稳定性能。

 

在选择使用微带线或接地共面波导传输线技术时,PCB材料在其中扮演怎样的角色呢?介电常数(Dk)和介电常数一致性等材料参数会影响传输线的电气性能。因电磁场在介电常数Dk的材料内部和外部都可以传播,其在电路结构中的传播方式不同从而影响电路材料的有效介电常数。对于顶层传输线和底层接地面的微带线电路结构,它的电磁场主要分布在两金属平面之间的介电材料内部,且集中分布在信号导体边缘。因此微带线电路的有效介电常数和PCB材料的介电常数值是密切相关的,如罗杰斯公司的RO4350B碳氢化合物陶瓷 PCB材料, 10GHz时其z(厚度)方向的介电常数工艺标准值为3.48,整个材料上的介电常数偏差保持在±0.05。

 

PCB材料的有效介电常数将决定的电路结构的尺寸,如50欧姆特征阻抗。例如,基于RO4350B碳氢化合物陶瓷电路材料的微带传输线,50欧姆特征阻抗条件下的电路宽度将基于该材料的介电常数值3.48。但对于使用该材料的接地共面波导,其有效介电常数会降低。因为电磁场将更多地分布于电路上方的空气中而不是PCB介电材料中,相比于微带线,接地共面波导的有效介电常数将减小。接地共面波导和微带线有效介电常数的差异还依赖于接地共面波导介质厚度和顶层地信号线-地之间的间距。

 

PCB加工因素对微带线电路造成的影响小于对接地共面波导电路造成的影响。例如,PCB镀铜厚度差异对微带线电路性能的影响很小,但会影响接地共面波导电路的性能。对于微带线电路,较厚的PCB铜层厚度仅略微减小插入损耗和降低电路的有效介电常数。而对于接地共面波导电路,较厚的PCB铜层厚度将导致顶层地—信号线—地间电磁场的增加,这使得接地共面波导电路上方空气中的电磁场分布增加。空气中电磁场分布的增加导致使用较厚的PCB铜层厚度的接地共面波导电路的电路损耗和PCB的有效介电常数均明显降低。

 

可以发现:尽管微带线在高频频段及毫米波频段有高的辐射损耗且难以实现高阶模抑制,微带线仍可适用于微波频段带宽相对较窄的电路。且微带线电路对PCB加工工艺和铜层厚度及厚度差异较不敏感。与此不同,接地共面波导在毫米波频段具有相对较低辐射损耗且能实现良好的高阶模抑制,这使得接地共面波导成为适用于30GHz及以上频段的候选传输线技术。此外,接地共面波导电路对PCB加工工艺和偏差要求相对不十分苛刻,这使得接地共面波导适合于高频频段的量产与应用。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
一文读懂集成电路图
一文读懂集成电路图

看整机电路图、板块电路图和系统电路图都是看以集成电路为核心的电路图。应当怎样看集成电路图?看什么内容?应当达到什么要求呢?

高速串行总线要怎么走?难点在哪里?
高速串行总线要怎么走?难点在哪里?

差分走线,信号换层过孔数量,等长长度把控,阻抗控制要求,跨分割的损耗,走线拐角的位置形状,绕线方式对应的插损和回损,布局不妥当造成的一系列串扰和叠层串扰,布局不恰当操作焊盘存在的stub。

8421编码器、4线-2线编码器、优先编码器等,这些编码器的原理你都懂吗?
8421编码器、4线-2线编码器、优先编码器等,这些编码器的原理你都懂吗?

在数字系统里,常常需要将某一信息(输入)变换为某一特定的代码(输出)。把二进制码按一定的规律编排,例如8421码、格雷码等,使每组代码具有一特定的含义(代表某个数字或控制信号)称为编码。

如何解决毫米波滤波器尺寸和偏差带来的挑战?

在主流 5G 无线通信的竞赛中,焦点已转移到毫米波 (mmWave) ,使用频谱中超过 20 GHz 的频率来增加带宽容量。由于高频的已知范围和路径损耗限制,毫米波信号需要更小的天线,这些天线可以紧密地封装在一起,以创建单个窄距聚焦波束,以实现具有更大覆盖范围的点对点通信。

与器件输出、待测量和其他电压或电流的比例有关的比率特性解析
与器件输出、待测量和其他电压或电流的比例有关的比率特性解析

本文中所说的比率特性是指器件输出与待测量和其他电压或电流的比例有关。

更多资讯
如何设计和验证TRL校准件,TRL校准应如何操作?
如何设计和验证TRL校准件,TRL校准应如何操作?

我们大家都知道传统的SOLT校准,即短路-开路-负载-直通校准,SOLT校准操作方便,测量准确度跟标准件的精度有很大关系,一般只适合于同轴环境测量。而TRL(Thru, Reflect, Line)校准是准确度比SOLT校准更高的校准方式,尤其适合于非同轴环境测量,例如PCB上表贴器件,波导,夹具,片上晶圆测量。

智能手机要求越来越高,射频前端将被洗牌?

与非网9月18日讯,近两年来,半导体行业、电子制造业的市场份额不断向头部企业聚敛,部分中小客户流失,芯片分销商普遍遭遇了行业洗牌、利润率下滑的局面。

第一代5G手机的射频设计是什么样的?未来会有哪些变革?
第一代5G手机的射频设计是什么样的?未来会有哪些变革?

5G智能手机的市场反应能力在这一个新的无线技术的转型初期是前所未有的,与之前的4G LTE演进不同,更多的手机厂商会第一时间将新设备提供给客户

带两个RMS检测器的集成双向桥,用于测量RF功率和回波损耗

定向耦合器用于检测RF功率,应用广泛,可以出现在信号链中的多个位置。本文探讨ADI公司的新器件ADL5920,其将基于宽带定向耦合器与两个RMS响应检测器集成在一个5 mm×5 mm表贴封装中。

SOI 产业联盟上海论坛期间颁奖

SOI产业联盟( SOI微电子完整价值链的领先行业组织)今日宣布了半导体行业的两位杰出获奖者,分别是来自村田制作所(Murata)旗下pSemi公司的董事长兼首席技术官Jim Cable和中芯集成电路(宁波)有限公司的首席执行官兼总经理Herb Huang(黄河)