一文详解CMOS芯片上的开路和短路测试

2019-02-12 10:45:53 来源:elecfans
标签:

 

虽然可以对各种器件进行开路短路测试,但这在半导体验证测试中最为常见。本文将详细描述在CMOS芯片上测试开路和短路的过程。

 

在深入研究开路和短路测试的技术细节之前,我们必须首先了解其与半导体验证的相关性。半导体验证通常分为结构和功能两部分。结构测试可确保芯片正确构建。功能测试确定芯片是否符合设计规范并在最终环境中按预期执行。打开和短路测试检查半导体芯片的保护二极管电路中的故障。因此,它是一种结构测试。


下图表示典型的CMOS芯片。可以看出,每个引脚都具有保护二极管和CMOS晶体管的网络。

 

图1: CMOS芯片的内部电路

 

每个输入引脚上的CMOS晶体管通过允许电流从V DD(芯片的电源电压)流入DUT电路以及从DUT电路流向V SS(地)来起到开关的作用。如果在输入或输出引脚上感应出过压,可能会损坏CMOS晶体管。为了保护这些器件,每个信号引脚都放置了两个二极管(参见图1)。第一个位于信号引脚和V DD之间,第二个位于信号引脚和V SS之间。如果在任何引脚上施加大于V DD的正过压,则V DD二极管变为正向偏置,允许电流在信号引脚和V DD之间流动。类似地,如果在任何引脚上施加大于V SS的负过压,则V SS二极管变为正向偏置,允许电流在V SS和信号引脚之间流动。这样,保护二极管可防止在过压条件下损坏CMOS晶体管和DUT电路。V DD和V SS保护二极管必须在开路和短路条件下进行测试,以确保其正常工作。如果保护二极管缺失或功能不正常,可能会出现开路情况。如果存在直接连接,则可能出现短暂情况:

 

引脚和V DD之间

引脚和V SS之间

引脚和另一个信号引脚之间

 

这些短路故障模式中的每一种都妨碍了设备的正确操作。打开并短接所有上述故障模式的测试检查。

 

注:CMOS集成电路基于FET技术,因此通常使用V DD / V SS术语来确定正电源电压/负电源电压(接地)。这些端子也可以记录为V CC / Gnd。

 

1.第1节:硬件设置

测试设置

开路和短路的测试设置分为两个例程:测试V DD保护二极管和测试V SS保护二极管。

 

测试V DD保护二极管

为了检测信号引脚的V DD保护二极管的开路或短路,将V SS,V DD和所有其他信号引脚连接到SMU地,并将最小电流(即100μA)强制插入信号引脚。如果V DD保护二极管正常工作,它将变为正向偏置,电流将在信号引脚和V DD之间流动(见图2)。

 

图2:测试VDD二极管(开关未显示)

 

通过测量正向偏置V DD二极管两端的压降,我们可以确定它是否正常工作。如果信号引脚和地之间测量的电压接近0 V(或接地),则信号引脚与地之间通过V SS,V DD和/或另一个信号引脚之间存在一个或多个短路。如果在信号引脚之间测量的电压或上升到高于可接受的正向偏置电压的电位,则信号引脚和地之间存在开路。如果测得的电压是可接受的正向偏压,则V DD保护二极管正常工作。表1显示了V DD的示例 保护二极管测试结果和由此产生的通过/失败规范。

 

 

注意: 没有电流(除少量漏电流外)流过V SS保护二极管,因为它会反向偏置。

 

注意: 可接受的正向偏压通常取决于制造半导体二极管的材料。然而,制造技术也可用于降低正向偏置电压降。硅二极管的正向偏压通常被认为是0.65 V.精确的电压降取决于流过二极管pn结的电流,结的温度和几个物理常数。正向偏置电压降,施加电流和相关变量之间的关系如下图3所示,通常称为二极管方程:

 

图3:二极管方程

 

二极管方程中的变量如下所述。ID =二极管电流(A)IS =饱和电流(A)VD =二极管两端的电压降(V)N =理想系数,介于1和2 Vt之间=热电压(V),室温下约25.85 mV两者之间的电压信号引脚和地将接近0 V,测试结果将为Fail:Shorted。如果其他信号引脚未全部接地,电流仍会流过正向偏置的V DD保护二极管(如图2所示),测试结果为Pass。

 

测试V SS保护二极管

测试V SS二极管的过程与测试V DD二极管的过程相同。所有引脚(包括V SS和V DD)都连接到SMU地。然而,这次,相同值的负电流(即-100μA)被强制进入信号引脚。如果V SS保护二极管正常工作,它将变为正向偏置,电流将在V SS和信号引脚之间流动(见图4)。

 

图4:测试VSS二极管(开关未显示)

 

注意:没有电流(除了少量漏电流)流过V DD保护二极管,因为它会反向偏置。

 

通过测量正向偏置V DD二极管两端的压降,我们可以确定它是否正常工作。表2列出了V SS保护二极管的测试参数。

 

自动化测试设置

 

有两种常见的硬件配置可用于执行开路/短路测试。首先,外部开关系统前端和可编程源测量单元可用于自动化V DD和V SS保护二极管测试。开关系统可以扫描预先配置的状态,创建到半导体器件的V DD,V SS和信号引脚所需的电流和接地路径。源测量单元可以强制所需的电流并测量从每个信号引脚到地的结果电压(见图5)。其次,除了交换系统外,还可以使用PXIe-6556,也可以使用卡的PPMU功能在数字引脚上使用。选项一将在下面详细讨论。

 

图5a:使用SMU和MUX进行Opens / Shorts自动测试设置

 

图5b:使用HSDIO打开/短接自动测试设置

 

以下步骤概述了使用上述SMU和开关组合进行开路和短路测试的过程:

 

第1步:将所有引脚接地

为了通过FET开关将SMU连接到DUT,使用矩阵拓扑结构,其中SMU的引脚连接到矩阵中的行,而引脚来自芯片连接到列。

 

通过关闭矩阵上的所有连接来完成DUT上所有引脚的接地,该连接将PXI-4130 SMU的地线连接到DUT上的引脚。从PXI-4130 SMU低引脚到V DD和V SS的连接直接通过电缆而不是通过开关完成。这是因为V DD和V SS引脚始终连接到SMU低引脚。虽然所有信号引脚最初都连接到SMU Low,但它们依次连接到SMU测量通道,因此通过矩阵开关连接到SMU。

 

重要的是不仅要将V SS和V DD连接到地。在测试保护二极管之前,所有其他信号引脚应接地。将所有其他信号引脚接地可确保检测到任何信号引脚到信号引脚短路。有关进一步说明,请参见图6。当在两个信号引脚之间检测到短路时,被测引脚和SMU低电压之间的电压应该超出表1和表2中列出的可接受范围(理想情况下为0V),测试应该失败。如果其他信号引脚未全部接地,则电流仍会流过正向偏置的V DD保护二极管,测试结果为Pass。见下面的图6。

 

[+]放大图片

图6:接地引脚对于检测短路至关重要

 

步骤2:在3 V的SMU上设置电压钳

为了在开路条件下产生的极限电压,在SMU上设置上限电压钳位。如果未设置钳位且电路开路,则SMU将测量非常高的电压值。这可能会损坏芯片电路。在PXI-4130上,电压钳位电平在软件中设置为3 V. 3 V是可接受的值,因为它高于检测开路(1.5V)的测试限值,并且在大多数CMOS的规格范围内芯片。

 

步骤3:从SMU强制±100uA并测量产生的电压

SMU每次向一个信号引脚的二极管施加±100μA的电流,并测量产生的电压。每个引脚通过矩阵开关依次连接到SMU。对于该测试,预期电压约为±0.65V(正向偏置二极管两端的电压降)。测量由强制电流产生的电压并与测试规格表进行比较,以确定最终的测试结果。

 

回到顶部2.第2节:软件设置

该开放和短路系统的软件是使用NI LabVIEW和NI Switch Executive开发的。LabVIEW用作主应用程序开发环境(ADE),而Switch ExecuTIve用于配置高密度矩阵上的路由。

 

以下软件版本用于实施Opens and Shorts Semiconductor测试:

LabVIEW 8.5图形编程环境

Switch ExecuTIve 2.1.1交换机管理软件

可以从本文档末尾的链接下载本文档中描述的LabVIEW代码。

 

注意: LabVIEW图形化编程语言中的功能块称为“虚拟仪器”或“VI”。因此,在描述本节中的过程时将使用首字母缩略词‘VI’。

 

如前所述,开路和短路测试可分为两个例程:a)测试V DD保护二极管,b)测试V SS保护二极管。两个例程都可以使用相同的硬件连接来执行,并且编程例程的唯一区别可以是简单地改变SMU的强制电流的方向。由于这些相似之处,本文档仅概述了演示如何测试V SS保护二极管的示例。该测试程序可以复制并稍作改动,以测试V DD保护二极管。有关必要变更的详细信息,请参见文件末尾。

 
关注与非网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
植入芯片治肥胖,已经在小白鼠上成功试验

8月16日消息?近日,六名病态肥胖的美国人已同意参加斯坦福大学的一项脑芯片临床试验,当他们考虑食物时,这种脑芯片会产生微小的电击,以阻止他们产生吃东西的想法。

与ECSITE合作,增加对测试设备的支持

ECSite Software Solution Provides Test Automation, Data Management and Reporting of 4G/5G Telecom Infrastructure Applications

5G带宽测试会遇到哪些问题?

今年的夏季很火热。同样地,作为全球5G商用的元年,今年也甚是火热。7月下旬,全球移动通信供应商协会发布的最新统计数据显示,截至2019年7月份中旬:有31个国家的54家移动通信运营商已经宣布在其现网中部署了符合3GPP标准的5G技术;已经有20个国家的35家移动通信运营商推出了符合3GPP标准的商用5G服务;

电路三种状态的简介

在学电子电路中,要学会分析电路,就从了解电路的三种状态开始。电路有哪三种状态:通路(负载)、短路、开路(空载)三种状态下的电源电压分别是U=E-IR, U=0。U=E,以下内容分别介绍这三种状态的具体情况。 1、通路状态 通路就是电路中的开关闭合,负载中有电流流过。在这种状态下,电源端电压与负

PCB电路板短路的原因及解决方法

【导读】焊接短路(如:连锡)、PCB短路(如:残铜、孔偏等)、器件短路、组装短路、ESD/EOS击穿、电路板内层微短路、电化学短路(如:化学残留、电迁移)、其他原因造成的短路。 首先,了解一下常见的电路板短路的种类: 短路按照功能性可分为: 焊接短路(如:连锡)、PCB短路(如:残铜、孔偏

更多资讯
FFT分析在示波器中的应用详解
FFT分析在示波器中的应用详解

目前,频谱分析在各种噪声、声波、震动、电声、生物、化学、医学和建筑等诸多领域中发挥了十分重要的作用。本文将通过解析相关基本参数,分享4M样本点在FFT分析中的优势。

零漂移精密运算放大器参数分析和基本构成
零漂移精密运算放大器参数分析和基本构成

零漂移精密运算放大器是专为由于差分电压小而要求高输出精度的应用设计的专用运算放大器。它们不仅具有低输入失调电压,还具有高共模抑制比(CMRR)、高电源抑制比(PSRR)、高开环增益和在宽温度及时间范围的低漂移(见表1)。这些特征使其非常适用于诸如低边电流检测和传感器接口、特别是具有非常小的差分信号的应用。

时序分析有哪些乐趣?如何才能精准预测?

无论我们是想预测金融市场的趋势还是用电量,时间都是我们模型中必须考虑的一个重要因素。例如,预测一天中什么时候会出现用电高峰是很有趣的,可以以此为依据调整电价或发电量。

一文读懂PLL器件的相位校准与控制
一文读懂PLL器件的相位校准与控制

顾名思义,锁相环(PLL)使用鉴相器比较反馈信号与参考信号,将两个信号的相位锁定在一起。虽然这种特性有许多用武之地,但是PLL如今最常用于频率合成,通常充当上变频器/下变频器中的本振(LO),或者充当高速模数转换器(ADC)或数模转换器(DAC)的时钟。

是德科技推出新型射频矢量信号发生器

是德科技公司(NYSE:KEYS)日前宣布推出新型 CXG X 系列射频(RF)矢量信号发生器(CXG)。该产品性能先进、符合标准,而且价格适中,能够满足工程师设计 IoT 和通用设备的需求。