香农采样定理,又称奈奎斯特采样定理,是信息论,特别是通讯与信号处理学科中的一个重要基本结论。1924 年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式:理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)。

香农采样定理的定义

为了不失真地恢复模拟信号,采样频率应该不小于模拟信号频谱中最高频率的2倍,公式为:fs≥2fmax。采样率越高,稍后恢复的波形就越接近原信号,但是对系统的要求就更高,转换电路必须具有更快的转换速度。

香农采样定理的定义

(图片来源于互联网)

香农采样定理公式证明

从采样定理中,我们可以得出以下结论:如果已知信号的最高频率fH,采样定理给出了保证完全重建信号的最低采样频率。这一最低采样频率称为临界频率或奈奎斯特采样率,通常表示为fN。相反,如果已知采样频率,采样定理给出了保证完全重建信号所允许的最高信号频率。


以上两种情况都说明,被采样的信号必须是带限的,即信号中高于某一给定值的频率成分必须是零,或至少非常接近于零,这样在重建信号中这些频率成分的影响可忽略不计。在第一种情况下,被采样信号的频率成分已知,比如声音信号,由人类发出的声音信号中,频率超过5 kHz的成分通常非常小,因此以10 kHz的频率来采样这样的音频信号就足够了。在第二种情况下,我们得假设信号中频率高于采样频率一半的频率成分可忽略不计。这通常是用一个低通滤波器来实现的。


如果不能满足上述采样条件,采样后信号的频率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号。这种频谱的重叠导致的失真称为混叠,而重建出来的信号称为原信号的混叠替身,因为这两个信号有同样的样本值。
 

香农采样定理公式证明

(图片来源于互联网)

香农采样定理的意义和作用

采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。

 

采样定理在数字式遥测系统、分时制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。

香农采样定理的意义和作用

(图片来源于互联网)