加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

内核转储的设置

2022/12/19
2712
阅读需 19 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

简介

当程序运行的过程中异常终止或崩溃,操作系统会将程序当时的内存状态记录下来,保存在一个文件中,这种行为就叫做 Core Dump(中文有的翻译成“核心转储”)。

我们可以认为 core dump 是“内存快照”,但实际上,除了内存信息之外,还有些关键的程序运行状态也会同时 dump 下来,例如寄存器信息(包括程序指针、栈指针等)、内存管理信息、其他处理器和操作系统状态和信息。

core dump 对于编程人员诊断和调试程序是非常有帮助的,因为对于有些程序错误是很难重现的,例如指针异常,而 core dump 文件可以再现程序出错时的情景。

核心转储如何产生

上面说当程序运行过程中异常终止或崩溃时会发生 core dump,但还没说到什么具体的情景程序会发生异常终止或崩溃。

例如我们使用 kill -9 命令杀死一个进程会发生 core dump 吗?实验证明是不能的,那么什么情况会产生呢?

Linux 中信号是一种异步事件处理的机制,每种信号都有其对应的默认操作,你可以在 signal(7) 查看 Linux 系统提供的信号以及默认处理。

默认操作主要包括:终止进程(Term)、忽略该信号(Ing)、终止进程并发生核心转储(Core)、暂停进程(Stop)、继续运行被暂停的进程(Cont)。

如果我们信号均是采用默认操作,那么,以下列出的几种信号,它们在发生时会产生 core dump:

Signal Action Comment 说明
SIGABRT Core Abort signal from abort 来自abort的终止信号
SIGBUS Core Bus error (bad memory access) 总线错误(内存访问错误)
SIGFPE Core Floating-point exception 浮点异常
SIGILL Core Illegal Instruction 非法指令
SIGIOT Core IOT trap. A synonym for SIGABRT 物联网陷阱。SIGABRT 的同义词
SIGQUIT Core Quit from keyboard 从键盘退出
SIGSEGV Core Invalid memory reference 无效的内存引用
SIGSYS Core Bad system call (SVr4) 错误的系统调用
SIGTRAP Core Trace/breakpoint trap 跟踪/断点陷阱
SIGUNUSED Core Synonymous with SIGSYS SIGSYS 的同义词
SIGXCPU Core CPU time limit exceeded (4.2BSD) 超出 CPU 时间限制
SIGXFSZ Core File size limit exceeded (4.2BSD) 超出文件大小限制

这就是为什么我们使用 Ctrl+z 来挂起一个进程或者 Ctrl+C 结束一个进程均不会产生 core dump。

因为前者会向进程发出 SIGTSTP 信号,该信号的默认操作为暂停进程(Stop Process);后者会向进程发出SIGINT 信号,该信号默认操作为终止进程(Terminate Process)。

同样,上面提到的 kill -9 命令会发出 SIGKILL 命令,该命令默认为终止进程。而如果我们使用 Ctrl+ 来终止一个进程,会向进程发出 SIGQUIT 信号,默认是会产生 core dump 的。

还有其它情景会产生 core dump, 如:程序调用 abort() 函数、访存错误、非法指令等等。

不会生成core dump文件的情况

    • 进程没有写入核心文件的权限。(默认情况下,核心文件称为 core 或 core.pid,其中 pid 是转储核心的进程的 ID,并在当前工作目录中创建。有关命名的详细信息,请参见下文。)如果出现以下情况,则写入核心文件失败:要创建的目录不可写,或者如果存在同名文件且不可写或不是常规文件(例如,它是目录或符号链接)。一个(可写的、常规的)文件与用于核心转储的同名文件已经存在,但有多个硬链接到该文件。将创建核心转储文件的文件系统已满;或已用完 inode;或以只读方式安装;或者用户已达到文件系统的配额。要创建核心转储文件的目录不存在。进程的 RLIMIT_CORE(核心文件大小)或 RLIMIT_FSIZE(文件大小)资源限制设置为零;请参阅 getrlimit(2) 和 shell 的

ulimit

    命令的文档(csh(1) 中的限制)。进程正在执行的二进制文件没有启用读取权限。(这是一种安全措施,可确保内容不可读的可执行文件不会产生可能可读的核心转储,其中包含可执行文件的映像。)进程正在执行一个set-user-ID(set-group-ID)程序,该程序被除进程的真实用户(组)ID之外的用户(组)拥有,或者进程正在执行具有文件能力(capabilities)的程序(请参阅 capabilities(7))。(但是,请参阅 prctl(2) PR_SET_DUMPABLE 操作的说明,以及 proc(5) 中 /proc/sys/fs/suid_dumpable 文件的说明)/proc/sys/kernel/core_pattern 为空且 /proc/sys/kernel/core_uses_pid 包含值 0。请注意,如果 /proc/sys/kernel/core_pattern 为空且 /proc/ sys/kernel/core_uses_pid 包含值 1,核心转储文件将具有 .pid 形式的名称,除非使用 ls(1) -a 选项,否则此类文件将被隐藏。(自 Linux 3.7 起)内核配置时没有配置 CONFIG_COREDUMP 选项。

此外,如果使用了 madvise(2) MADV_DONTDUMP 标志,则核心转储可能会排除进程的部分地址空间。

启用内核转储

使用ulimit命令可以查看当前的内核转储功能是否生效。-c表示内核转储文件的大小限制,0表示内核转储无效。

root@firefly:~# ulimit -c
0

使用以下命令即可开启内核转储功能,unlimited表示不限制core文件的大小。

root@firefly:~# ulimit -c unlimited
root@firefly:~# ulimit -c
unlimited

服务器上交叉编译一个测试程序,确认内核转储是否生效。

#include <stdio.h>
  
int main(void)
{
 int *a=NULL;
 *a=0x1;
 return 0;
}
aarch64-linux-gnu-gcc -g test.c -o test

将生成的可执行程序拷贝到开发板上。

root@firefly:~/code# ./test 
Segmentation fault (core dumped)
root@firefly:~/code# ls
core  test
root@firefly:~/code# file core 
core: ELF 64-bit LSB core file, ARM aarch64, version 1 (SYSV), SVR4-style, from './test', real uid: 0, effective uid: 0, real gid: 0, effective gid: 0, execfn: './test', platform: 'aarch64'

将core文件拷贝到服务器上,可以使用以下命令解core文件

➜  mnt sudo aarch64-linux-gnu-gdb  test core
.....

GNU gdb (Linaro_GDB-2017.05) 7.12.1.20170417-git
......
warning: Could not load shared library symbols for 2 libraries, e.g. /lib/aarch64-linux-gnu/libc.so.6.
Use the "info sharedlibrary" command to see the complete listing.
Do you need "set solib-search-path" or "set sysroot"?
Core was generated by `./test'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0  0x00000055815836f4 in main () at test.c:6
6       *a=0x1;
(gdb) l 6
1       #include <stdio.h>
2
3       int main(void)
4       {
5       int *a=NULL;
6       *a=0x1;
7       return 0;
8       }
(gdb) 

可以看到,在GDB启动后,已经打印出test.c的第6行收到了SIGSEGV信号,产生了段错误。使用list命令可以查看附近的源代码。

在专用目录生成内核转储

core文件默认会在当前目录生成,大多数时候,我们希望固定core文件的生成位置。

内核转储保存位置可以通过sysctl变量kernel.core_pattern设置。例如,在/etc/sysctl.conf中做如下设置。

root@firefly:~# vim /etc/sysctl.conf

#在末尾追加以下两行
kernel.core_pattern = /root/core/%t-%e-%p-%c.core
kernel.core_uses_pid = 0

#使配置生效
root@firefly:~# sysctl -p
kernel.core_pattern = /root/core/%t-%e-%p-%c.core
kernel.core_uses_pid = 0

在该状态下执行test测试程序,就会在/root/core/下生成内核转储文件。

root@firefly:~/mnt# ./test
Segmentation fault (core dumped)
root@firefly:~/mnt# ls /root/core/
1664718591-test-2699-18446744073709551615.core

kernel.core_pattern 中可以设置的格式符如下

格式符 说明
%% % 字符本身
%p 被转储进程的进程 ID(PID)
%u 被转储进程的真实用户 ID(real UID)
%g 被转储进程的真实组 ID(real GID)
%s 引发转储的信号编号
%t 转储时刻(从 1970/1/1 0:00 开始的秒数)
%h 主机名(同 uname(2) 返回的 nodename)
%e 可执行文件名
%c 转储文件的大小上限(内核版本 2.6.24 后可用)

压缩转储文件

kernel.core_pattern也支持管道,可以在kernel.core_pattern 后加入管道符自动压缩内核转储文件。

vim /etc/sysctl.conf
kernel.core_pattern = |/usr/local/sbin/core_helper %t %e %p %c
kernel.core_uses_pid = 0
sysctl -p

core_helper内容如下

#!/bin/sh
exec gzip -> /root/core/$1-$2-$3-$4.core.gz

加上可执行权限

chmod 777 /usr/local/sbin/core_helper

这样,发生内核转储时,就会在/root/core下生成压缩的转储文件。

root@firefly:~/mnt# ./test 
Segmentation fault (core dumped)
root@firefly:~/mnt# ls /root/core/
1664720072-test-2723-18446744073709551615.core.gz
root@firefly:~/mnt#

启用整个系统的内核转储功能

在终端通过命令行只是临时修改,重启后无效 ,要想永久修改有三种方式:

在/etc/rc.local 中增加一行 ulimit -c unlimited

在/etc/security/limits.conf最后增加如下两行记录:

@root soft core unlimited
@root hard core unlimited

利用内核转储掩码排除共享内存

大型应用程序,通常会跑多个进程。如果所有进程的共享内存全部转存储的话,会对磁盘造成压力,转储过程也会加重系统的负担,甚至会由于转储时间过长导致服务停止时间过长。

由于共享内存的进程中,共享内存的内容是相同的,所以可以只在某个进程中转储共享内存,无需全部转储。

bit 0 转储匿名私有映射。
bit 1 转储匿名共享映射。
bit 2 转储文件支持的私有映射。
bit 3 转储文件支持的共享映射。
bit 4(自 Linux 2.6.24 起)转储 ELF 标头。
bit 5(自 Linux 2.6.28 起)转储私有大页面。
bit 6 (自 Linux 2.6.28) 转储共享大页面。
bit 7(自 Linux 4.4 起)转储私有 DAX 页面。
bit 8(自 Linux 4.4 起)转储共享 DAX 页面。

通过coredump_filter的内容可以查看设置情况

cat /proc/<PID>/coredump_filter

如果要跳过所有共享内存区域,应将掩码值设置为1.

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
74HC14D,653 1 Nexperia 74HC14; 74HCT14 - Hex inverting Schmitt trigger@en-us SOIC 14-Pin

ECAD模型

下载ECAD模型
$0.25 查看
APV1122A 1 Panasonic Electronic Components Optoelectronic Device, DIP-6

ECAD模型

下载ECAD模型
$3.7 查看
511FBA125M000BAGR 1 Silicon Laboratories Inc Oscillator, 0.1MHz Min, 250MHz Max, 125MHz Nom,

ECAD模型

下载ECAD模型
$40.91 查看

相关推荐

电子产业图谱

作者就职于某500强公司,担任BSP工程师。具有丰富的嵌入式开发经验。专栏主要分享计算机基础,操作系统,Linux驱动开发,Arm体系与架构,C/C++,数据结构与算法等相关文章。欢迎关注我的公众号【嵌入式与Linux那些事】,一起学习交流。