传递函数是指零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z变换)与激励(即输入)量的拉普拉斯变换之比。记作G(s)=Y(s)/U(s),其中Y(s)、U(s)分别为输出量和输入量的拉普拉斯变换。
1.传递函数的概念
传递函数是描述线性系统动态特性的基本数学工具之一,经典控制理论的主要研究方法——频率响应法和根轨迹法——都是建立在传递函数的基础之上。传递函数是研究经典控制理论的主要工具之一。接下来小编就给大家介绍一下传递函数的三种形式以及传递函数的特征方程。
2.传递函数的三种形式
1、传值,就是把你的变量的值传递给函数的形式参数,实际就是用变量的值来新生成一个形式参数,因而在函数里对形参的改变不会影响到函数外的变量的值。
2、传址,就是传变量的地址赋给函数里形式参数的指针,使指针指向真实的变量的地址,因为对指针所指地址的内容的改变能反映到函数外,也就是能改变函数外的变量的值。
3、传引用,实际是通过指针来实现的,能达到使用的效果如传址,可是使用方式如传值。
3.传递函数的特征方程
传递函数的特征方程属于闭环特征方程是1+G(s)
G(s)是开环传递函数,Φ(s)就是闭环传递函数,令分母=0就是闭环特性方程。
^用matlab画的G(s)=K/((S^2)*(S+1))的根轨迹,交点应是原点 闭环特征方程是s^3+s^2+k=0 将S=jw代入上式,-jw^3-w^2+k=0 实部方程k-w^2=0 虚部方程w^3=0 解得 w=0 k=0 交点确实是原点0665。
设开环传递函数GH=A/B,则fai=G/(1+GH)
特征方程就是1+GH=0,即1+A/B=0,即(A+B)/B=0,即A+B=0,就是直观上的分子加分母;对于特征方程,就是"如果给闭环,直接分母为零;如果给开环,求出来闭环再让它分母为零。