• 正文
    • 1.永磁无刷电机的工作原理
    • 2.永磁无刷电机的分类
    • 3.永磁无刷电机的应用领域
  • 相关内容
  • 电子产业图谱
申请入驻 产业图谱

永磁无刷电机

10/31 10:21 作者:eefocus_3880508
阅读需 5 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

永磁无刷电动机是通过电子电路换相或电流控制的永磁电动机。永磁无刷电动机有正弦波驱动和方波驱动两种型式;驱动电流为矩形波的通常称为永磁无刷直流电动机,驱动电流为正弦波的通常称为永磁交流伺服电动机,按传感类型可分为有传感器电动机和正传感器电动机。

1.永磁无刷电机的工作原理

永磁无刷直流电动机的控制系统主要有永磁无刷直流电动机、直流电压、逆变器位置传感器和控制器几部分组成,采用“三相六拍—120°方波型”驱动。如图1所示。

永磁无刷直流电动机通过逆变器功率管按一定的规律导通、关断,使电动机定子电枢产生按60°电角度不断前进的磁势,带动电动机转子旋转来实现的。分析如图1所示。图1是理想条件下的电枢各相反电势和电流,每个功率管导通120°电角度,互差60°电角度,当功率管V3和V4导通时,电动机的V和—U(电流流进绕组方向为正向)相通(参考图1)。定子电枢合成磁势为图1所示的Fa5;若功率管V3关断,功率管V5导通,此时电动机的W相和—U相通电,电枢合成磁势变为Fa5,Fa5比Fa4顺时针前进了60°电角度。

由此可知,定子电枢产生的磁势将随着功率管有规律地不断导通和关断,并按60°电角度不断地顺时针转动。逆变器功率管共有六种出发组合状态,每种出发组合状态只有与确定的转子位置或发电动机波形相对应,才能产生最大的平均电磁转矩。当两个磁势向量的夹角为90°是,相互作用力最大。而电子电枢产生的磁势是以60°电角度在前进,因此在每种出发模式下,转子磁势与定子磁势的夹角在60°~120°范围变化才能产生最大的平均电磁转矩。如图1所示,假如在t1时刻,转子的此时Fj处于线圈U、X平面内,且使转子顺时针旋转,此时应该导通功率管V5和V4,使定子的合成磁势为Fa5与Fj的夹角成120°。转子在Fa5与Fj相互作用产生电磁转矩的作用下顺时针旋转,到t3时刻Fa5与Fj的夹角成60°,此时关断功率管V4,导通功率管V6,定子合成磁势为Fa6,与Fj的夹角成120°,两者产生的电磁转矩使转子进一步旋转。

永磁无刷电机的工作原理

2.永磁无刷电机的分类

永磁无刷电机根据驱动电流波形、控制方式不同可分为方波电流驱动的“方波永磁同步电机”(也称为永磁无刷直流电机BLDCM)和正弦波电流驱动的“正弦波永磁同步电机(PMSM)”。

PMSM的电机定子一般采用三相分布、短距绕组,转子结构的设计保证气隙磁密接近正弦,通过SPWM变压变频器输出正弦定子电压和电流。

BLDCM的转子永磁体常采用瓦片形磁钢,以获得(接近)方波分布的气隙磁密,而定子一般采用集中整距绕组,其感应的反电势为梯形波。永磁无刷直流电机的相数有两相、三相、四相等,绕组的接法有星形和封闭式两种,逆变电路有桥式和非桥式两类,其有多种相互配合的方案,其中三相绕组应用最广。

由于BLDCM的逆变器只需输出方波电流,可象有刷直流电动机一样,采用线性PWM控制,较采用SPWM控制的PMSM逆变器控制简单。总体上,PMSM在电机本体设计加工、位置检测、控制策略等方面较BLDCM复杂,但在抑制转矩脉动、调速性能等指标上,PMSM占优势。

永磁无刷电机的分类

3.永磁无刷电机的应用领域

永磁无刷电机具有和直流电动机相似的优良调速性能,又克服了直流电动机采用机械式换向装置所引起的换向火花、可靠性低等缺点,且运行效率高、体积小和质量轻,因此广泛应用在航空航天、电动车辆、医疗器械、仪器仪表、伺服系统、数控机床、军事装备、化工、轻纺和现代家用电器等领域。随着稀土永磁材料性价比不断提高,电力电子技术和微电子技术的不断进步,永磁无刷电机的应用日益普及。

永磁无刷电机的应用领域

更多相关内容

电子产业图谱

TA的热门作品
查看更多