加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
    • No.1 什么是雷达?
    • No.2 雷达的历史
    • No.3 毫米波雷达的原理
    • No.4 车载毫米波雷达
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

4000字带你全面认识毫米波雷达!

04/29 15:45
1135
阅读需 14 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

当前最火的行业当属新能源汽车,而新能源汽车一个最最最重要的特点就是——智能化自动驾驶,智能感知可以说是新能源汽车的一个大大的买点。就比如最新发布的小米Su7,理想L6和问界M5,智能化就是其最大的卖点,而智能化除了软件的支持外,还有一个最重要的部件就是雷达激光雷达毫米波雷达超声波雷达都是新能源汽车智能感知的重要组成部分。

在问界M5智驾版的介绍中,就应用到了1个高精度激光雷达,3个毫米波雷达和12个超声波雷达组成。

那么什么是毫米波雷达?他究竟有哪些神奇之处?我们今天一起来学习一下。

No.1 什么是雷达?

我们习惯了雷达这个词,其实雷达是一个外来词,一个音译词,来源于英语Radar,发音/ˈreɪ.dɑːr/,而雷达也不是在英语中一开始就有的,它是一个首字母缩写词,全称为 Radio Detection and Ranging,也就是无线电探测与测距。这也是雷达这个词的基本意义,利用无线电来发现目标和测量距离。

随着技术的发展,雷达的应用和功能早已超脱了探测和测距这个基本范围,比如测速,测角,目标识别,目标成像,战场侦察等等。但是只要用到电磁波来进行探测的技术,我们依然称为雷达。

所以雷达,它不姓雷,他姓Radio,也就是无线电波,应用最为广泛的电磁波频段。

电磁波的频谱如下,除了无线电波Radio之外还有红外线,可见光,紫外线以及更高频的x射线和伽玛射线。

而无线电波中根据电磁波波长,又可分为长波,短波,米波,厘米波,毫米波以及亚毫米波,如下图所示。

那么毫米波雷达,就是利用无线电波里的毫米波来进行探测和测距的装置,电磁波波长为10mm到1mm,对应的频率为30GHz到300GHz。除了毫米波雷达,还有厘米波雷达,以及米波雷达。

雷达的工作原理如下图所示

发射机产生的雷达信号经由天线发射出去,目标截获并反射一部分雷达信号,有一部分反射信号被雷达接收机接收,雷达天线收集回波信号,经接收机放大 和滤波处理后发送至信号处理机和数据 处理机进行处理,最终输入到显示器上。

雷达按照不同的维度可以分为不同类别,比如按照电磁波信号类型可分为脉冲雷达,连续波CW雷达和调频连续FMCW波雷达。

按照使用场景又可分为军用雷达和民用雷达;

按照天线配置可分为单站雷达,双基地雷达和电子扫描阵列雷达;

按照载波又可分为厘米波雷达,毫米波雷达,激光雷达,宽带雷达等;

不同的雷达,其功能和应用场景也不同。

No.2 雷达的历史

讲到雷达,就不得不提电磁波的历史。

这种看不到摸不着的东西,确实让人们煞费苦心,要不是天才科学家麦克斯韦的预言,我想,有可能现在我们还处于通信基本靠吼的时代。

磁的应用比较早,我们的祖先黄帝就是用了磁铁制造了司南,打败了蚩尤;而典的认知更多的是早期人们对闪电的恐惧;电和磁在奥斯特的实验中发生了第一次握手,而后在法拉第的电磁实验中产生了更紧密的耦合,一直到天才物理学家麦克斯韦推导出了麦克斯韦方程组,电和磁才真正走到了一起,进而推导出了电磁波的存在。

一直到1885年-1889年,赫兹通过一系列实验证明了电磁波的存在,并成功测量了电磁波的波长和速度,电磁波才真真正正的走入人们的视野,也逐渐进入人们的生活,直到今天,不可替代。

我们都知道回声的原理,当我们对着高大的建筑物或者大山大声说话的时候,我们的声波会被建筑物反射回来,形成回声。利用回声的时差,人们可以粗略的估算大山的距离。

所以,当赫兹证实电磁波的存在之后,研究者最先用到的就是电磁波的反射波原理来测量距离。

1904年,德国工程师斯蒂安·胡尔斯迈尔(Christian Hülsmeyer)正是基于赫兹的原理,发明了障碍物探测器和船舶导航装置,也就是最早的雷达,发明示意图如下图所示。

胡尔斯迈尔还建造了一座”雷达“,并公开演示了这个神奇的装置,并且成功将电磁波信号发射到一艘正在靠近的船上,并且成功接收到了反射信号。

只可惜,那个时候还相对和平,没有什么人对他的设备感兴趣。

直到1927年,Hans E Hollmann 博士进一步研究了该设备,并建造了第一个厘米波长的发射器接收器,这就是第一个“微波”通信系统。汉斯-卡尔·冯·威尔森(Hans-Karl von Willsen)与霍尔曼(Hollmann)和第三位科学家冈瑟·埃尔布斯洛(Gunther Erbsloeh)合作,完善了一种设备,可以探测到大约8公里外的船只和大约30公里外在500米高空飞行的飞机。海洋系统被称为“Seetakt”,陆地系统被称为“Freya”——这三个系统可以说是创造了我们最常与雷达联系在一起的应用——探测和评估物体的距离。

真正的雷达就诞生了,伴随着第二次世界大战,雷达的技术和应用都得到了飞速的发展。

直到今天,最先进的雷达技术仍然是服务于战争的需要。

而随着自动驾驶技术的发展,毫米波雷达也成为了民用最广泛的一种雷达设备。

No.3 毫米波雷达的原理

毫米波雷达,就是利用毫米波来进行探测的装置,我们先来说一下毫米波的优点和缺点。

毫米波的工作波长在10mm到1mm之间,对应的工作频率为30GHz到300GHz,是处于微波和光波之间的一段电磁波频谱,所以呢,毫米波雷达兼具微波和光波的双重优点,总结如下:

小天线口径、窄波束:高跟踪和引导精度;易于进行低仰角跟踪,抗地面多径和杂波干扰;对近空目标具有高横向分辨力;对区域成像和目标监视具备高角分辨力;窄波束的高抗干扰性能;高天线增益;容易检测小目标,包括电力线、电杆和弹丸等。
大带宽:具有高信息速率,容易采用窄脉冲或宽带调频信号获得目标的细节结构特征;具有宽的扩谱能力,减少多径、杂波并增强抗干扰能力;相邻频率的雷达或毫米波识别器工作,易克服相互干扰;高距离分辨力,易得到精确的目标跟踪和识别能力。
高多普勒频率:慢目标和振动目标的良好检测和识别能力;易于利用目标多普勒频率特性进行目标特征识别;对干性大气污染的穿透特性,提供在尘埃、烟尘和干雪条件下的良好检测能力。
良好的抗隐身性能:当前隐身飞行器上所涂覆的吸波材料都是针对厘米波的。根据国外的研究,毫米波雷达照射的隐身目标,能形成多部位较强的电磁散射,使其隐身性能大大降低,所以,毫米波雷达还具有反隐身的潜力。

当然也有其劣势,比如雨、雾和湿雪等高潮湿环境的衰减,以及大功率器件和插损的影响降低了毫米波雷达的探测距离;树丛穿透能力差,相比微波,对密树丛穿透力低;元器件成本高,加工精度相对要求高,单片收发集成电路的开发相对迟缓。

取其有点,去其糟粕,毫米波雷达的应用主要在:

高精度多维搜索测量:进行高精度距离、方位、频率和空间位置的测量定位;
雷达安装平台有体积、重量、振动和其它环境的严格要求:毫米波雷达天线尺寸小、重量轻,容易满足便携、弹载、车载、机载和星载等不同平台的特殊环境要求;
目标特征提取和分类识别:毫米波雷达高分辨力、宽工作频带、大数值的多普勒频率响应、短的波长易获得目标细节特征和清晰轮廓成像等特点,适于目标分类和识别的重要战术要求;
小目标和近距离探测:毫米波短波长对应的光学区尺寸较小,相对微波雷达更适于小目标探测。除特殊的空间目标观测等远程毫米波雷达外,一般毫米波雷达适用于30 km 以下的近距离探测;
抗电子战干扰性强:毫米波窗口可用频段宽,易进行宽频带扩频和跳频设计。同时针对毫米波雷达的侦察和干扰设备面临宽频带、大气衰减和窄波束等干扰难题,毫米波雷达相对微波雷达具有更好的抗干扰能力。

所以呢,毫米波雷达在导弹制导,炮火控制,等军事领域得到了广泛的应用,同样配合激光雷达和摄像头的应用,毫米波雷达在智能汽车和自动驾驶上也得到了广泛的应用。

毫米波雷达在智能汽车上的应用,主要在测距,测速和测角三个方面。以 FMCW 雷达系统为例,其基本功能实现原理为:

FMCW雷达的信号的频率随时间线性上升,如下图所示,这种类型的信号也称为线性调频脉冲。

下图是FMCW信号的波形,振幅A和随时间的变化。

如果以频率作为时间的函数的话,其波形如下图所示:

MCW 雷达系统发射线性调频脉冲信号,并捕捉其发射路径中的物体反射的信号。其发射频率和接收频率随时间的函数如下图所示

那么利用这个时间差,就能够快速得到目标的距离。

同样道理,我们利用两个FMCW信号就可以得到目标的速度。

FMCW雷达利用水平面也可以估算反射信号的角度,如下图所示,这个角度也叫做达到角(AoA)

当然,对于移动的物体,在计算中要考虑多普勒效应

No.4 车载毫米波雷达

车载毫米波雷达目前常用的工作频率有24GHz、60GHz、77GHz、80GHz,频率越高,波长越短,其精度也就越高。

华为官网上有介绍一款ASN850毫米波感知雷达,工作频率在80GHz,探测距离大于1000米,探测宽度可达到10车道,详细的性能指标如下图所示。

像上文提到的测距,测速,测角这三种功能,在这款雷达上都具备,行业内也称这种类型的雷达为3D雷达,但是没有高度信息,这个在智能驾驶中也会引起误判,也是传说中特斯拉当初弃用毫米波雷达的原因之一。

不过随着技术的发展,4D雷达开始显露头角,在传统的测距,测速,测角的基础上,加上了测高度的功能。

相比传统毫米波雷达仅能判断出前方有障碍物,4D毫米波雷达增加了纵向天线及处理器,可以接收更多信息返回点,并像激光雷达一样呈点云图,能呈现出更多细节信息,探测出障碍物的形状,弥补了传统雷达难以识别静态障碍物的短板。

基于TI的AWR2243芯片的4D雷达城市道路交通参与者目标分类与检测研究,包括同济大学测试场采集的目标检测与分类数据集可视化结果表明,4D雷达可以输出有高度的目标点云,反映目标的轮廓外形。虽然与激光雷达点云成像原理不同,仅从毫米波雷达的点云还无法准确判断一个目标额外形等特征,但是其点云的散射特征具备一定规律。

随着4D成像雷达技术的发展,毫米波雷达在智能驾驶中的应用也越来越广泛。

参考资料:

1,一文读懂4D毫米波雷达;

2,深度聊聊4D毫米波雷达技术及发展

3,车载毫米波雷达——高阶自动驾驶的标配

4,ASN850-毫米波雷达-企业微波-华为企业业务 (huawei.com);

5,毫米波雷达_百度百科 (baidu.com);

6,工业毫米波雷达传感器 | TI.com.cn;

7,Radar - Detection, Military, Technology | Britannica



	

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
ACS770LCB-050U-PFF-T 1 Allegro MicroSystems LLC Hall Effect Sensor, BICMOS, Plastic/epoxy, Rectangular, 5 Pin, Through Hole Mount, PACKAGE-5

ECAD模型

下载ECAD模型
$11.16 查看
MLX90316LDC-BCG-000-RE 1 Melexis Microelectronic Integrated Systems Hall Effect Sensor, 0deg Min, 360deg Max, -8-8mA, Rectangular, Surface Mount, 0.150 INCH, ROHS COMPLIANT, PLASTIC, SOIC-8
暂无数据 查看
TLE4998P4 1 Infineon Technologies AG Hall Effect Sensor, 50mT Min, 200mT Max, 0.30-0.60V, BICMOS, Plastic/Epoxy, Rectangular, 4 Pin, Through Hole Mount, GREEN PACKAGE-4
暂无数据 查看

相关推荐

电子产业图谱