扫码加入

  • 正文
  • 相关推荐
申请入驻 产业图谱

三角函数的查表法详解

2025/10/23
2288
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

很多算法中都会用到三角函数的计算,不管是在 IMU 的姿态解算中,还是FOC电机控制中做 Clarke 和 Park 变换时,都无法避免三角函数的运算,如果调用默认的C 语言函数,其效率会非常低,如果是在 M4 内核上,因为内核具备了浮点运算单元,速度还能稍快一些,但是对于 M0 内核的单片机,就不得不考虑更快速的查表法了。

为了数学和物理中的标准相同,我们在计算三角函数时通常采用弧度表示,因此,在编程的时候,所有的库函数都采用了相同的标准,也就是使用弧度。角度与弧度的转换关系为:

在程序中,我们可以利用宏定义来进行快速的的单位换算:

#define _PI  3.14159265358979f#define _2PI 6.28318530717958f
const float r2d = (180.0f/_PI);const float d2r = (_PI/180.0f);
//使用方法  float angle_degrees = 60.0;         // 假设有一个60度的角float angle_radians = angle_degrees * d2r; // 转换为弧度

 

理解了角度与弧度的关系,接下来看一下表的点数,这个点数的大小决定了我们计算时的精度,三角函数是一个周期函数,我们只需要计算一个周期就可以,本质上我们是对于三角函数波形的一个周期内进行点位分割。我们先拿曲线拟合来举例子。

在曲线拟合的时候,我们会把曲线进行分段,然后在每一个小的分段里默认函数的对应关系为 y=kx 是线性的。只要我们分段足够多,也就是在线上标注的点越多,我们就能够越精确地找到 x 和 y 的对应关系。

换到三角函数上面也是一样的,拿 SIN 正弦函数来说

上图中,x 的范围设定为一个周期,也就是 0 →  2π,对应到角度时 0 → 360度,如果我们在 x 轴上均匀的取 1024 个点,提前先计算好对应的y 值,那么有一个 x,我就能够根据数组的索引查询到对应的y,也就实现了一个 1024 点的sin(x)计算。

三角函数的定点查表法(1024 点)

// 外部定义的正弦查找表 (0-1023 对应 0-2π)const int16_t SinTable[1024] = {//  0     1     2     3     4     5     6     7     8     9     10    11    12    13    14    15       0,    201,  402,  603,  804,  1005, 1206, 1407, 1608, 1809, 2009, 2210, 2410, 2611, 2811, 3012,    3212, 3412, 3612, 3811, 4011, 4210, 4410, 4609, 4808, 5007, 5205, 5404, 5602, 5800, 5998, 6195,    6393, 6590, 6786, 6983, 7179, 7375, 7571, 7767, 7962, 8157, 8351, 8545, 8739, 8933, 9126, 9319,    9512, 9704, 9896, 10087,10278,10469,10659,10849,11039,11228,11417,11605,11793,11980,12167,12353,    12539,12725,12910,13094,13279,13462,13645,13828,14010,14191,14372,14553,14732,14912,15090,15269,    15446,15623,15800,15976,16151,16325,16499,16673,16846,17018,17189,17360,17530,17700,17869,18037,    18204,18371,18537,18703,18868,19032,19195,19357,19519,19680,19841,20000,20159,20317,20475,20631,    20787,20942,21096,21250,21403,21554,21705,21856,22005,22154,22301,22448,22594,22739,22884,23027,    23170,23311,23452,23592,23731,23870,24007,24143,24279,24413,24547,24680,24811,24942,25072,25201,    25329,25456,25582,25708,25832,25955,26077,26198,26319,26438,26556,26674,26790,26905,27019,27133,    27245,27356,27466,27575,27683,27790,27896,28001,28105,28208,28310,28411,28510,28609,28706,28803,    28898,28992,29085,29177,29268,29358,29447,29534,29621,29706,29791,29874,29956,30037,30117,30195,    30273,30349,30424,30498,30571,30643,30714,30783,30852,30919,30985,31050,31113,31176,31237,31297,    31356,31414,31470,31526,31580,31633,31685,31736,31785,31833,31880,31926,31971,32014,32057,32098,    32137,32176,32213,32250,32285,32318,32351,32382,32412,32441,32469,32495,32521,32545,32567,32589,    32609,32628,32646,32663,32678,32692,32705,32717,32728,32737,32745,32752,32757,32761,32765,32766,    32767,32766,32765,32761,32757,32752,32745,32737,32728,32717,32705,32692,32678,32663,32646,32628,    32609,32589,32567,32545,32521,32495,32469,32441,32412,32382,32351,32318,32285,32250,32213,32176,    32137,32098,32057,32014,31971,31926,31880,31833,31785,31736,31685,31633,31580,31526,31470,31414,    31356,31297,31237,31176,31113,31050,30985,30919,30852,30783,30714,30643,30571,30498,30424,30349,    30273,30195,30117,30037,29956,29874,29791,29706,29621,29534,29447,29358,29268,29177,29085,28992,    28898,28803,28706,28609,28510,28411,28310,28208,28105,28001,27896,27790,27683,27575,27466,27356,    27245,27133,27019,26905,26790,26674,26556,26438,26319,26198,26077,25955,25832,25708,25582,25456,    25329,25201,25072,24942,24811,24680,24547,24413,24279,24143,24007,23870,23731,23592,23452,23311,    23170,23027,22884,22739,22594,22448,22301,22154,22005,21856,21705,21554,21403,21250,21096,20942,    20787,20631,20475,20317,20159,20000,19841,19680,19519,19357,19195,19032,18868,18703,18537,18371,    18204,18037,17869,17700,17530,17360,17189,17018,16846,16673,16499,16325,16151,15976,15800,15623,    15446,15269,15090,14912,14732,14553,14372,14191,14010,13828,13645,13462,13279,13094,12910,12725,    12539,12353,12167,11980,11793,11605,11417,11228,11039,10849,10659,10469,10278,10087,9896, 9704,    9512, 9319, 9126, 8933, 8739, 8545, 8351, 8157, 7962, 7767, 7571, 7375, 7179, 6983, 6786, 6590,    6393, 6195, 5998, 5800, 5602, 5404, 5205, 5007, 4808, 4609, 4410, 4210, 4011, 3811, 3612, 3412,    3212, 3012, 2811, 2611, 2410, 2210, 2009, 1809, 1608, 1407, 1206, 1005, 804,  603,  402,  201,    0,    -201, -402, -603, -804, -1005,-1206,-1407,-1608,-1809,-2009,-2210,-2410,-2611,-2811,-3012,    -3212,-3412,-3612,-3811,-4011,-4210,-4410,-4609,-4808,-5007,-5205,-5404,-5602,-5800,-5998,-6195,    -6393,-6590,-6786,-6983, -7179, -7375, -7571, -7767, -7962, -8157, -8351, -8545, -8739, -8933, -9126, -9319,    -9512, -9704, -9896, -10087,-10278,-10469,-10659,-10849,-11039,-11228,-11417,-11605,-11793,-11980,-12167,-12353,    -12539,-12725,-12910,-13094,-13279,-13462,-13645,-13828,-14010,-14191,-14372,-14553,-14732,-14912,-15090,-15269,    -15446,-15623,-15800,-15976,-16151,-16325,-16499,-16673,-16846,-17018,-17189,-17360,-17530,-17700,-17869,-18037,    -18204,-18371,-18537,-18703,-18868,-19032,-19195,-19357,-19519,-19680,-19841,-20000,-20159,-20317,-20475,-20631,    -20787,-20942,-21096,-21250,-21403,-21554,-21705,-21856,-22005,-22154,-22301,-22448,-22594,-22739,-22884,-23027,    -23170,-23311,-23452,-23592,-23731,-23870,-24007,-24143,-24279,-24413,-24547,-24680,-24811,-24942,-25072,-25201,    -25329,-25456,-25582,-25708,-25832,-25955,-26077,-26198,-26319,-26438,-26556,-26674,-26790,-26905,-27019,-27133,    -27245,-27356,-27466,-27575,-27683,-27790,-27896,-28001,-28105,-28208,-28310,-28411,-28510,-28609,-28706,-28803,    -28898,-28992,-29085,-29177,-29268,-29358,-29447,-29534,-29621,-29706,-29791,-29874,-29956,-30037,-30117,-30195,    -30273,-30349,-30424,-30498,-30571,-30643,-30714,-30783,-30852,-30919,-30985,-31050,-31113,-31176,-31237,-31297,    -31356,-31414,-31470,-31526,-31580,-31633,-31685,-31736,-31785,-31833,-31880,-31926,-31971,-32014,-32057,-32098,    -32137,-32176,-32213,-32250,-32285,-32318,-32351,-32382,-32412,-32441,-32469,-32495,-32521,-32545,-32567,-32589,    -32609,-32628,-32646,-32663,-32678,-32692,-32705,-32717,-32728,-32737,-32745,-32752,-32757,-32761,-32765,-32766,    -32767,-32766,-32765,-32761,-32757,-32752,-32745,-32737,-32728,-32717,-32705,-32692,-32678,-32663,-32646,-32628,    -32609,-32589,-32567,-32545,-32521,-32495,-32469,-32441,-32412,-32382,-32351,-32318,-32285,-32250,-32213,-32176,    -32137,-32098,-32057,-32014,-31971,-31926,-31880,-31833,-31785,-31736,-31685,-31633,-31580,-31526,-31470,-31414,    -31356,-31297,-31237,-31176,-31113,-31050,-30985,-30919,-30852,-30783,-30714,-30643,-30571,-30498,-30424,-30349,    -30273,-30195,-30117,-30037,-29956,-29874,-29791,-29706,-29621,-29534,-29447,-29358,-29268,-29177,-29085,-28992,    -28898,-28803,-28706,-28609,-28510,-28411,-28310,-28208,-28105,-28001,-27896,-27790,-27683,-27575,-27466,-27356,    -27245,-27133,-27019,-26905,-26790,-26674,-26556,-26438,-26319,-26198,-26077,-25955,-25832,-25708,-25582,-25456,    -25329,-25201,-25072,-24942,-24811,-24680,-24547,-24413,-24279,-24143,-24007,-23870,-23731,-23592,-23452,-23312,    -23170,-23027,-22884,-22739,-22594,-22448,-22301,-22154,-22005,-21856,-21705,-21554,-21403,-21250,-21096,-20942,    -20787,-20631,-20475,-20317,-20159,-20000,-19841,-19680,-19519,-19357,-19195,-19032,-18868,-18703,-18537,-18371,    -18204,-18037,-17869,-17700,-17530,-17360,-17189,-17018,-16846,-16673,-16499,-16325,-16151,-15976,-15800,-15623,    -15446,-15269,-15090,-14912,-14732,-14553,-14372,-14191,-14010,-13828,-13645,-13462,-13279,-13094,-12910,-12725,    -12539,-12353,-12167,-11980,-11793,-11605,-11417,-11228,-11039,-10849,-10659,-10469,-10278,-10087,-9896, -9704,    -9512, -9319, -9126, -8933, -8739, -8545, -8351, -8157, -7962, -7767, -7571, -7375, -7179, -6983, -6786, -6590,    -6393, -6195, -5998, -5800, -5602, -5404, -5205, -5007, -4808, -4609, -4410, -4211, -4011, -3811, -3612, -3412,    -3212, -3012, -2811, -2611, -2410, -2210, -2009, -1809, -1608, -1407, -1206, -1005, -804,  -603,   -402, -201};
// 假设的联合体定义,用于将两个int16_t组合成一个int32_t,也就是将正弦值和余弦值放在一起typedef union {    int32_t as_int32;    struct     {        int16_t sin_value; // 高16位存放正弦值        int16_t cos_value; // 低16位存放余弦值    } as_words;} sin_cos_result_t;
/** * @brief 通过查表法快速计算角度的正弦值和余弦值。 * @param angle 输入角度,使用Q16格式(0x0000-0xFFFF 对应 0°-360°) * @return 一个32位整数,高16位为sin(angle),低16位为cos(angle) */int32_t CalSinCos(int16_t angle) {    sin_cos_result_t result;    uint16_t angle_temp;    uint16_t sin_index;    uint16_t cos_index;
    // 1. 将输入角度视为无符号数(0~65535 对应 0~360度)    angle_temp = (uint16_t)angle;
    // 2. 将角度映射到查找表索引(0~1023)    // 右移6位相当于除以64 (65536/64=1024)    sin_index = angle_temp >> 6;
    // 3. 计算余弦索引:cos(θ) = sin(θ + 90°)    // 90度在1024点的表中对应256个索引的偏移    // 使用位与操作确保索引在0-1023范围内(相当于对1024取模)    cos_index = (sin_index + 256) & 0x03FF;
    // 4. 查表获取正弦和余弦值    result.as_words.sin_value = SinTable[sin_index];    result.as_words.cos_value = SinTable[cos_index];
    // 5. 返回组合后的结果    return result.as_int32;}

 

上面的代码实现了一个 1024 点位的三角函数查表,可以快速的计算出一个角度对应的 sin 和 cos 值。

上面的算法最大的缺点是 1024 个点占用的存储空间太大了,就一个表占用了我们 1K * 2 字节,接下来,我们利用三角函数的特性来把这个表压缩一下。

压缩版 256 点三角函数查表

没错,这里的公式就是一个口诀,奇变偶不变,符号看象限

sin(90°-α) = cosα

sin(90°+α) = cosα

cos(90°-α) = sinα

cos(90°+α) = -sinα

sin(180°-α) = sinα

sin(180°+α) = -sinα

cos(180°-α) = -cosα

cos(180°+α) = -cosα

sin(270°-α) = -cosα

sin(270°+α) = -cosα

cos(270°-α) = -sinα

cos(270°+α) = sinα

推导太麻,我们从图形上来推测吧。

我们将一个周期的正弦波分成 4 个象限,其中红色为 sin,绿色为 cos

第一象限 (U0_90):角度θ本身就在0-90度之间。

hSin直接查表 sin(θ),值为正。记录为查表 +[0 - 256]

hCos通过 cos(θ) 值时正值。波形上正好与 sin 镜像,因此可以理解为反着顺序查表,记录为+[256-0]

这里使用0xFF - (u8)(hindex)就对应 (90° - θ)这个角度在表中的索引。

第二象限 (U90_180)

正弦:首先值为正,波形上看,正好和第一象限对称,倒序查表即可,+[256 - 0]。

余弦:首先值时负,波形上看,将它加负号后反转到 X 轴上方,正好和第一象限 sin 相同,-[0 - 256]。

第三象限 (U180_270)

正弦:首先值为负,波形上看,将它加负号反转到 X 轴上方,正好和第一象限 sin 相同,-[0 - 256]。

余弦:首先值为负,波形上看,将它加负号反转到 X 轴上方,正好和第一象限的 cos 相同,-[256 - 0]。

第四象限 (U270_360)

正弦:首先值为负,波形上看,将它加负号反转到 X 轴上方,正好和第二象限 sin 相同,-[256 - 0]。

余弦:首先值为正,波形上看,它和第一象限的 sin 值一样,所以正序查表,+[0 - 256]

接下来,直接按照不同象限来列式子即可。


#define SIN_MASK	 0x0300#define U0_90    	 0x0200#define U90_180  	 0x0300#define U180_270 	 0x0000#define U270_360 	 0x0100
//外部定义的正弦查找表(0°-90°),256个点,Q15格式const int16_t hSin_Cos_Table[256] = {    0x0000,0x00C9,0x0192,0x025B,0x0324,0x03ED,0x04B6,0x057F,    0x0648,0x0711,0x07D9,0x08A2,0x096A,0x0A33,0x0AFB,0x0BC4,    0x0C8C,0x0D54,0x0E1C,0x0EE3,0x0FAB,0x1072,0x113A,0x1201,    0x12C8,0x138F,0x1455,0x151C,0x15E2,0x16A8,0x176E,0x1833,    0x18F9,0x19BE,0x1A82,0x1B47,0x1C0B,0x1CCF,0x1D93,0x1E57,    0x1F1A,0x1FDD,0x209F,0x2161,0x2223,0x22E5,0x23A6,0x2467,    0x2528,0x25E8,0x26A8,0x2767,0x2826,0x28E5,0x29A3,0x2A61,    0x2B1F,0x2BDC,0x2C99,0x2D55,0x2E11,0x2ECC,0x2F87,0x3041,    0x30FB,0x31B5,0x326E,0x3326,0x33DF,0x3496,0x354D,0x3604,    0x36BA,0x376F,0x3824,0x38D9,0x398C,0x3A40,0x3AF2,0x3BA5,    0x3C56,0x3D07,0x3DB8,0x3E68,0x3F17,0x3FC5,0x4073,0x4121,    0x41CE,0x427A,0x4325,0x43D0,0x447A,0x4524,0x45CD,0x4675,    0x471C,0x47C3,0x4869,0x490F,0x49B4,0x4A58,0x4AFB,0x4B9D,    0x4C3F,0x4CE0,0x4D81,0x4E20,0x4EBF,0x4F5D,0x4FFB,0x5097,    0x5133,0x51CE,0x5268,0x5302,0x539B,0x5432,0x54C9,0x5560,    0x55F5,0x568A,0x571D,0x57B0,0x5842,0x58D3,0x5964,0x59F3,    0x5A82,0x5B0F,0x5B9C,0x5C28,0x5CB3,0x5D3E,0x5DC7,0x5E4F,    0x5ED7,0x5F5D,0x5FE3,0x6068,0x60EB,0x616E,0x61F0,0x6271,    0x62F1,0x6370,0x63EE,0x646C,0x64E8,0x6563,0x65DD,0x6656,    0x66CF,0x6746,0x67BC,0x6832,0x68A6,0x6919,0x698B,0x69FD,    0x6A6D,0x6ADC,0x6B4A,0x6BB7,0x6C23,0x6C8E,0x6CF8,0x6D61,    0x6DC9,0x6E30,0x6E96,0x6EFB,0x6F5E,0x6FC1,0x7022,0x7083,    0x70E2,0x7140,0x719D,0x71F9,0x7254,0x72AE,0x7307,0x735E,    0x73B5,0x740A,0x745F,0x74B2,0x7504,0x7555,0x75A5,0x75F3,    0x7641,0x768D,0x76D8,0x7722,0x776B,0x77B3,0x77FA,0x783F,    0x7884,0x78C7,0x7909,0x794A,0x7989,0x79C8,0x7A05,0x7A41,    0x7A7C,0x7AB6,0x7AEE,0x7B26,0x7B5C,0x7B91,0x7BC5,0x7BF8,    0x7C29,0x7C59,0x7C88,0x7CB6,0x7CE3,0x7D0E,0x7D39,0x7D62,    0x7D89,0x7DB0,0x7DD5,0x7DFA,0x7E1D,0x7E3E,0x7E5F,0x7E7E,    0x7E9C,0x7EB9,0x7ED5,0x7EEF,0x7F09,0x7F21,0x7F37,0x7F4D,    0x7F61,0x7F74,0x7F86,0x7F97,0x7FA6,0x7FB4,0x7FC1,0x7FCD,    0x7FD8,0x7FE1,0x7FE9,0x7FF0,0x7FF5,0x7FF9,0x7FFD,0x7FFE};
// 正余弦值结果结构体typedef struct {    int16_t hSin; // 正弦值,Q15格式    int16_t hCos; // 余弦值,Q15格式} Sin_Cos_Value;
/** * @brief 通过查表法计算任意角度的正弦和余弦值。 * @param angle 输入角度,Q15格式,范围[-32768, 32767] 对应 [-π, π] 弧度或 [-180°, 180°]。 * @return Sin_Cos_Value 包含正弦值(hSin)和余弦值(hCos)的结构体,均为Q15格式。 */Sin_Cos_Value CalSinCos(int16_t angle){    Sin_Cos_Value result = {0};    uint16_t hindex;
    // 1. 角度标准化:将输入角度从[-32768, 32767]转换到[0, 65535]无符号范围。    // 这使得角度值可以方便地进行整数运算和象限判断。    hindex = (uint16_t)((int32_t)angle + 32768U);
    // 2. 计算10位索引并确定象限:将角度范围从65536缩小到1024。    // 右移6位(相当于除以64)得到0-1023的索引值,其高2位代表象限。    hindex /= 64U; // 或者使用效率更高的位操作: hindex >>= 6;
    // 3. 根据角度所在象限,利用三角函数的对称性进行查表和符号处理。    switch (hindex & SIN_MASK)    {        case U0_90: // 第一象限 (0° to 90°): sin正, cos正            result.hSin = hSin_Cos_Table[hindex];            result.hCos = hSin_Cos_Table[255 - hindex]; // cos(θ) = sin(90°-θ)            break;
        case U90_180: // 第二象限 (90° to 180°): sin正, cos负            result.hSin = hSin_Cos_Table[255 - hindex];            result.hCos = -hSin_Cos_Table[hindex];            break;
        case U180_270: // 第三象限 (180° to 270°): sin负, cos负            result.hSin = -hSin_Cos_Table[hindex];            result.hCos = -hSin_Cos_Table[255 - hindex];            break;
        case U270_360: // 第四象限 (270° to 360°): sin负, cos正            result.hSin = -hSin_Cos_Table[255 - hindex];            result.hCos = hSin_Cos_Table[hindex];            break;
        default:            // 理论上不会执行到此,因为hindex的高2位只有00,01,10,11四种情况。            break;    }
    return result;}

 

最后,再提供一个浮点查表的代码,这里就等于把三角函数的结果计算成浮点,查表方式相同,只是返回值变成了浮点数。

const float IQSin_Cos_Table[256]={0.0, 0.006135884649154475, 0.012271538285719925, 0.01840672990580482, 0.024541228522912288, 0.030674803176636626, 0.03680722294135883, 0.04293825693494082,0.049067674327418015,	0.055195244349689934, 0.06132073630220858, 0.06744391956366405, 0.07356456359966743, 0.07968243797143013, 0.0857973123444399, 0.09190895649713272,0.0980171403295606, 0.10412163387205459, 0.11022220729388306, 0.11631863091190475, 0.1224106751992162, 0.12849811079379317, 0.13458070850712617, 0.1406582393328492,0.14673047445536175, 0.15279718525844344, 0.15885814333386145, 0.1649131204899699, 0.17096188876030122, 0.17700422041214875, 0.18303988795514095, 0.1890686641498062,0.19509032201612825, 0.2011046348420919, 0.20711137619221856, 0.21311031991609136, 0.2191012401568698, 0.22508391135979283, 0.2310581082806711, 0.2370236059943672,0.24298017990326387, 0.24892760574572015, 0.25486565960451457, 0.2607941179152755, 0.26671275747489837, 0.272621355449949, 0.27851968938505306, 0.2844075372112719,0.29028467725446233, 0.2961508882436238, 0.3020059493192281, 0.30784964004153487, 0.3136817403988915, 0.3195020308160157, 0.3253102921622629, 0.33110630575987643, 0.33688985339222005, 0.3426607173119944, 0.34841868024943456, 0.35416352542049034, 0.3598950365349881, 0.36561299780477385, 0.37131719395183754, 0.37700741021641826, 0.3826834323650898, 0.38834504669882625, 0.3939920400610481, 0.3996241998456468, 0.40524131400498986, 0.4108431710579039, 0.41642956009763715, 0.4220002707997997, 0.4275550934302821, 0.43309381885315196, 0.43861623853852766, 0.4441221445704292, 0.44961132965460654, 0.45508358712634384, 0.46053871095824, 0.4659764957679662, 0.47139673682599764, 0.4767992300633221, 0.4821837720791227, 0.487550160148436, 0.49289819222978404, 0.49822766697278187, 0.5035383837257176, 0.508830142543107,0.5141027441932217, 0.5193559901655896, 0.524589682678469, 0.5298036246862946, 0.5349976198870972, 0.5401714727298929, 0.5453249884220465, 0.5504579729366048, 0.5555702330196022, 0.560661576197336, 0.5657318107836131, 0.5707807458869673, 0.5758081914178453, 0.5808139580957645, 0.5857978574564389, 0.5907597018588742, 0.5956993044924334, 0.600616479383869, 0.6055110414043255, 0.6103828062763095, 0.6152315905806268, 0.6200572117632891, 0.6248594881423863, 0.629638238914927, 0.6343932841636455, 0.6391244448637757, 0.6438315428897914, 0.6485144010221124, 0.6531728429537768, 0.6578066932970786, 0.6624157775901718, 0.6669999223036375, 0.6715589548470183, 0.6760927035753159, 0.680600997795453, 0.6850836677727004, 0.6895405447370668, 0.693971460889654, 0.6983762494089729, 0.7027547444572253, 0.7071067811865475, 0.7114321957452164, 0.7157308252838186, 0.7200025079613817, 0.7242470829514669, 0.7284643904482252, 0.7326542716724128, 0.7368165688773698, 0.7409511253549591, 0.745057785441466, 0.7491363945234593, 0.7531867990436124, 0.7572088465064845, 0.7612023854842618, 0.765167265622459, 0.7691033376455796, 0.773010453362737, 0.7768884656732324, 0.7807372285720944, 0.7845565971555752, 0.7883464276266062, 0.7921065773002124, 0.7958369046088835, 0.799537269107905, 0.8032075314806448, 0.8068475535437992, 0.8104571982525948, 0.8140363297059483, 0.8175848131515837, 0.8211025149911046, 0.8245893027850253, 0.8280450452577558, 0.8314696123025452, 0.83486287498638, 0.838224705554838, 0.8415549774368983, 0.844853565249707, 0.8481203448032971, 0.8513551931052652, 0.8545579883654005, 0.8577286100002721, 0.8608669386377673, 0.8639728561215867, 0.8670462455156926, 0.8700869911087113, 0.8730949784182901, 0.8760700941954066, 0.8790122264286334, 0.8819212643483549, 0.8847970984309378, 0.8876396204028539, 0.8904487232447579, 0.8932243011955153, 0.8959662497561851, 0.8986744656939538, 0.901348847046022, 0.9039892931234433, 0.9065957045149153, 0.9091679830905223, 0.9117060320054299, 0.9142097557035307, 0.9166790599210427, 0.9191138516900578, 0.9215140393420419, 0.9238795325112867, 0.9262102421383113, 0.9285060804732155, 0.9307669610789837, 0.9329927988347388, 0.9351835099389475, 0.937339011912575, 0.9394592236021899, 0.9415440651830208, 0.9435934581619604, 0.9456073253805213, 0.9475855910177411, 0.9495281805930367, 0.9514350209690083, 0.9533060403541938, 0.9551411683057707, 0.9569403357322089, 0.9587034748958716, 0.9604305194155658, 0.9621214042690416, 0.9637760657954398, 0.9653944416976894, 0.9669764710448521, 0.9685220942744173, 0.970031253194544, 0.9715038909862518, 0.9729399522055601, 0.9743393827855759, 0.9757021300385286, 0.9770281426577544, 0.9783173707196277, 0.9795697656854405, 0.9807852804032304, 0.9819638691095552, 0.9831054874312163, 0.984210092386929, 0.9852776423889412, 0.9863080972445987, 0.9873014181578584, 0.9882575677307495, 0.989176509964781, 0.9900582102622971, 0.99090263542778, 0.9917097536690995, 0.99247953459871, 0.9932119492347945, 0.9939069700023561, 0.9945645707342554, 0.9951847266721968, 0.9957674144676598, 0.996312612182778, 0.9968202992911657, 0.9972904566786902, 0.9977230666441916, 0.9981181129001492, 0.9984755805732948, 0.9987954562051724, 0.9990777277526454, 0.9993223845883495, 0.9995294175010931, 0.9996988186962042, 0.9998305817958234, 0.9999247018391445, 0.9999811752826011};

 

相关推荐

登录即可解锁
  • 海量技术文章
  • 设计资源下载
  • 产业链客户资源
  • 写文章/发需求
立即登录