加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

谈谈SiC MOSFET的短路能力

2023/08/27
7094
阅读需 7 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

在电力电子的很多应用,如电机驱动,有时会出现短路的工况。这就要求功率器件有一定的扛短路能力,即在一定的时间内承受住短路电流而不损坏。

目前市面上大部分IGBT都会在数据手册中标出短路能力,大部分在5~10us之间,例如英飞凌IGBT3/4的短路时间是10us,IGBT7短路时间是8us。

而大部分的SiC MOSFET都没有标出短路能力,即使有,也比较短,例如英飞凌的CoolSiCTM MOSFET单管封装器件标称短路时间是3us,EASY封装器件标称短路时间是2us。

为什么IGBT和SiC MOSFET短路能力差这么多,这是SiC天生的缺陷吗?今天我们简单分析一下。

先以IGBT为例,看一下短路时,功率器件内部发生了什么?

功率器件正常工作时处于饱和区,CE电压很低,此时器件电流随CE电压提高而上升。随着CE电压进一步提升,反型层沟道被夹断,器件电流相对保持稳定,不再随CE电压上升而上升,我们称之为退出饱和区。在IGBT的输出特性曲线上,我们能看到明显的退饱和现象。(关于IGBT退饱和特性更详细分析可参考如何理解IGBT的退饱和现象以及安全工作区

(a) IGBT工作在饱和区

(b)  IGBT退出饱和区,沟道夹断

IGBT输出特性曲线

有的SiC MOSFET没有短路能力,是因为它没有退饱和特性吗?非也,SiC MOSFET也有退饱和特性,只不过对于MOSFET,工作区的命名方式和IGBT正好相反,正常工作的状态为线性区。当DS之间电压上升到一定程度后,沟道夹断,电流随DS电压上升的趋势变小,这时MOSFET进入了饱和区。只不过从输出特性上看,对于SiC MOSFET,进入饱和的拐点不太明显。SiC MOSFET进入饱和区的拐点不太明显,和DIBL(漏致势垒降低效应)有关,有兴趣了解的读者请戳这篇文章SiC MOSFET的短沟道效应

我们以下图为例,来说明SiC MOSFET的一类短路过程。这是两个45mΩ 1200V CoolSiC™ MOSFET的短路波形:一个是4脚的TO-247封装,另一个是3脚TO-247封装。图中显示了两者在VDS=800V的直流电压下的情况。

短路刚开始发生时,漏极电流迅速上升,很快到达一个峰值。由于开尔文源设计中的反馈回路减少,4脚TO-247封装的MOSFET的电流上升得更快,在短路事件开始时,它也显示出较少的自热,峰值电流很高,超过300A。相反,3脚TO-247封装的器件显示出较小的峰值电流。造成这种情况的主要原因是di/dt作用于3脚元件的功率回路中的杂散电感,产生的瞬时电压对VGS产生负反馈,从而降低了开关速度。随后,短路电流引起SiC MOSFET芯片结温上升,沟道迁移率μn随之降低,同时叠加JFET效应,使得短路电流自峰值后开始下降,漏极电流下降到大约150A,直至关断。测试波形证明了两种封装的TO-247 CoolSiC™ MOSFET的典型3μs短路能力。对于功率模块,根据相关的目标应用要求,目前的短路能力最高为2μs。我们的CoolSiC™ MOSFET是第一个在数据表中保证短路耐受时间的器件。

TO247 3pin 封装的IMW120R030M1H中,关于短路时间的定义:

EASY封装的FF33MR12W1M1H中,关于短路时间的定义:

大部分IGBT短路时间在5~10μs,SiC MOSFET器件短路时间相对比较低,主要原因有以下几点:

通过以上分析,我们可以看到,当功率器件处于短路状态时,短路电流相对恒定。对于IGBT来说,短路电流一般是额定电流的4~6倍,而SiC MOSFET的短路电流一般可达额定电流的10倍。这一点从二者的输出特性曲线就可以看出来。

当功率器件短路时,器件承受母线电压,电场分布在整个漂移区。因为SiC材料的临界电场强度约是Si材料的10倍,因此,要达到同样的耐压等级,SiC MOSFETI漂移区仅需要Si IGBT的十分之一。这意味着SiC MOSFET短路时发热热量更集中,温度也更高。

SiC MOSFET芯片面积小于同电流等级的IGBT,电流密度更高,热量更集中。

综上所述,SiC MOSFET面积小、短路电流高、漂移层薄等特性,导致其短路时发热量集中,相对IGBT来说,短路时间就相对短一些。

是不是SiC MOSFET短路能力就一定不如IGBT呢?也并不是这样。功率器件的短路能力都是设计出来的,短路能力需要和其他性能做折衷。比如增加器件沟道密度,MOSFET的导通电阻会下降,但相应的,电流密度更高,短路电流会更大,因此短路时间下降。

除了导通电阻,SiC MOSFET短路能力设计还要考虑耐压、损耗、寿命等多种因素。可以设计一个损耗极低但没有短路能力的器件,也可以稍微牺牲一点性能,使器件具备短路能力,从而提升整体系统的可靠性。选择哪一个方向,使器件最终呈现什么样的性能,都是针对目标应用权衡的结果。

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
0430450212 1 Molex Rectangular Power Connector, 2 Contact(s), Male, Solder Terminal, HALOGEN FREE AND ROHS COMPLIANT

ECAD模型

下载ECAD模型
暂无数据 查看
CS60-16IO1 1 IXYS Corporation Silicon Controlled Rectifier, 75A I(T)RMS, 48000mA I(T), 1600V V(DRM), 1600V V(RRM), 1 Element, PLUS247, 3 PIN
$10.2 查看
7775-2 1 Keystone Electronics Corp PCB Terminal,

ECAD模型

下载ECAD模型
$0.71 查看

相关推荐

电子产业图谱

英飞凌功率半导体产品技术和应用技术的推广和交流,发布研讨会日程等。相关产品为IGBT, IPM, 大功率二极管晶闸管,IGBT/MOSFET驱动器,功率组件,iMotion等。