一、工作流程详细设计
1、数据采集流程
# ECM50-A07 数据采集核心逻辑(MicroPython示例)import machineimport timefrom lora import LoRafrom modbus import ModbusRTU
class DataCollector:
def __init__(self):
# 初始化LoRa模块
self.lora = LoRa(
frequency=433000000, # 433MHz频段
bandwidth=500000, # 500kHz带宽
sf=7, # 扩频因子
coding_rate=5 # 编码率
)
# 初始化RS485接口(气象站)
self.modbus = ModbusRTU(
uart=machine.UART(1, baudrate=9600),
pins=('GPIO17', 'GPIO16') # TX, RX
)
# 初始化模拟量输入
self.adc1 = machine.ADC(machine.Pin(34)) # AI1
self.adc2 = machine.ADC(machine.Pin(35)) # AI2
# 传感器数据缓冲区
self.sensor_data = {
'soil_moisture': [], # 土壤湿度(%)
'soil_temperature': [], # 土壤温度(℃)
'air_temperature': [], # 空气温度(℃)
'air_humidity': [], # 空气湿度(%)
'rainfall': 0, # 降雨量(mm)
'water_level': 0, # 水位(m)
}
def collect_lora_data(self):
"""采集LoRa传感器数据"""
# 轮询所有LoRa节点
for node_id in self.lora_nodes:
# 发送数据请求
self.lora.send(f"REQ:{node_id}")
# 等待响应(带超时)
start_time = time.time()
while time.time() - start_time < 2: # 2秒超时
if self.lora.available():
data = self.lora.receive()
if data.startswith(f"DATA:{node_id}"):
# 解析传感器数据
self._parse_sensor_data(node_id, data)
break
def collect_ai_data(self):
"""采集模拟量传感器数据"""
# 读取水位传感器(4-20mA转电压)
adc_value1 = self.adc1.read()
voltage1 = (adc_value1 / 4095) * 3.3 # ESP32 ADC参考电压3.3V
# 4-20mA转实际水位(假设量程0-5米)
# 4mA对应0米,20mA对应5米
current1 = (voltage1 / 120) * 1000 # 假设使用120Ω采样电阻
if 4 <= current1 <= 20:
water_level = (current1 - 4) * (5 / 16) # 5米量程
self.sensor_data['water_level'] = water_level
# 读取第二个AI通道(可接土壤EC值传感器)
adc_value2 = self.adc2.read()
# ... 类似处理逻辑
def run_collection_cycle(self):
"""执行完整的数据采集周期"""
# 步骤1:采集LoRa传感器数据
self.collect_lora_data()
# 步骤2:采集RS485气象站数据
self.collect_weather_data()
# 步骤3:采集模拟量传感器
self.collect_ai_data()
# 步骤4:采集数字量状态
self.check_di_status()
return self.sensor_data
2、智能决策引擎
灌溉决策算法:
class IrrigationDecision:
def __init__(self, config):
self.config = config # 灌溉策略配置
self.history = [] # 历史决策记录
def make_decision(self, sensor_data, weather_forecast):
"""核心决策函数"""
decision = {
'need_irrigation': False,
'valve_id': None,
'duration': 0,
'water_amount': 0,
'fertilizer': False,
'reason': ''
}
# 1. 基于土壤湿度的决策
soil_moisture = sensor_data.get('soil_moisture', [])
if soil_moisture:
avg_moisture = sum(soil_moisture) / len(soil_moisture)
# 获取作物适宜湿度范围
crop_config = self.config['crops'].get(sensor_data['crop_type'], {})
min_moisture = crop_config.get('min_moisture', 30)
if avg_moisture < min_moisture:
decision['need_irrigation'] = True
decision['reason'] = f'土壤湿度低于阈值({avg_moisture:.1f}% < {min_moisture}%)'
# 计算灌溉量(基于水分亏缺模型)
deficit = min_moisture - avg_moisture
decision['water_amount'] = self._calculate_water_amount(
deficit,
sensor_data['soil_type'],
sensor_data['crop_stage']
)
# 2. 考虑天气预报(避免灌溉后立即下雨)
if weather_forecast.get('rain_probability', 0) > 70:
if decision['need_irrigation']:
# 如果预报有雨,减少灌溉量或推迟灌溉
decision['water_amount'] *= 0.5
decision['reason'] += ' | 降雨概率高,减少灌溉量'
# 3. 考虑蒸发蒸腾量(ET0)
et0 = self._calculate_et0(
sensor_data['air_temperature'],
sensor_data['air_humidity'],
sensor_data['solar_radiation'],
sensor_data['wind_speed']
)
# 作物系数法计算作物需水量
crop_water_needed = et0 * crop_config.get('kc_factor', 0.8)
if crop_water_needed > 0:
decision['water_amount'] = max(decision['water_amount'], crop_water_needed)
# 4. 决策优化(考虑灌溉效率)
if decision['water_amount'] > 0:
decision['duration'] = self._calculate_irrigation_duration(
decision['water_amount'],
self.config['valve_flow_rate']
)
# 选择最优阀门(基于分区优先级)
decision['valve_id'] = self._select_valve(sensor_data['zone_priority'])
return decision
def _calculate_water_amount(self, deficit, soil_type, crop_stage):
"""计算灌溉水量(mm)"""
# 土壤持水能力参数
soil_params = {
'sand': {'field_capacity': 12, 'wilting_point': 4},
'loam': {'field_capacity': 28, 'wilting_point': 12},
'clay': {'field_capacity': 35, 'wilting_point': 18},
}
# 作物生长阶段系数
stage_coeff = {
'seedling': 0.4,
'vegetative': 0.7,
'flowering': 1.0,
'fruiting': 0.9,
'mature': 0.5,
}
soil = soil_params.get(soil_type, soil_params['loam'])
available_water = soil['field_capacity'] - soil['wilting_point']
# 灌溉量 = 水分亏缺量 × 根系深度 × 阶段系数
root_depth = self.config['root_depth'].get(crop_stage, 0.3) # 默认0.3m
stage_factor = stage_coeff.get(crop_stage, 1.0)
# 转换为毫米(1mm = 1L/m²)
water_mm = deficit * available_water * root_depth * 1000 * stage_factor
return max(water_mm, 0)
3、设备控制流程
class IrrigationController:
def __init__(self):
# 初始化DO控制引脚
self.valve1 = machine.Pin(12, machine.Pin.OUT) # 电磁阀1
self.valve2 = machine.Pin(13, machine.Pin.OUT) # 电磁阀2
self.pump = machine.Pin(14, machine.Pin.OUT) # 水泵
# 初始化DI监测引脚
self.pump_status = machine.Pin(25, machine.Pin.IN) # 水泵状态反馈
self.valve_feedback = machine.Pin(26, machine.Pin.IN) # 阀门反馈
# 控制状态
self.status = {
'valve1': False,
'valve2': False,
'pump': False,
'last_irrigation': None,
'total_water_used': 0,
}
def execute_irrigation(self, decision):
"""执行灌溉控制"""
if not decision['need_irrigation']:
return {'success': True, 'message': '无需灌溉'}
try:
# 1. 启动水泵(先开水泵,后开阀门)
self._start_pump()
time.sleep(2) # 等待水泵稳定
# 2. 开启指定阀门
valve_map = {1: self.valve1, 2: self.valve2}
valve_pin = valve_map.get(decision['valve_id'], self.valve1)
valve_pin.value(1)
# 3. 开始计时灌溉
start_time = time.time()
irrigation_duration = decision['duration'] * 60 # 转为秒
# 4. 灌溉过程监控
while (time.time() - start_time) < irrigation_duration:
# 实时监测设备状态
if not self._check_device_status():
self._emergency_stop()
return {'success': False, 'message': '设备故障'}
# 计算已用水量
flow_rate = self.config['valve_flow_rate'] # L/min
elapsed_min = (time.time() - start_time) / 60
self.status['total_water_used'] = flow_rate * elapsed_min
time.sleep(1) # 每秒检查一次
# 5. 灌溉结束(先关阀门,后关水泵)
valve_pin.value(0)
time.sleep(1)
self._stop_pump()
# 6. 记录灌溉日志
self._log_irrigation(decision)
return {
'success': True,
'water_used': self.status['total_water_used'],
'duration': irrigation_duration / 60,
}
except Exception as e:
self._emergency_stop()
return {'success': False, 'message': str(e)}
def _emergency_stop(self):
"""紧急停止所有设备"""
self.valve1.value(0)
self.valve2.value(0)
self.pump.value(0)
4、数据上报与云平台集成
MQTT数据上报协议:
class CloudConnector:
def __init__(self):
self.mqtt_client = None
self.last_upload = 0
self.data_buffer = []
# MQTT配置
self.config = {
'server': 'mqtt.ebytecloud.com',
'port': 1883,
'client_id': 'ecm50_a07_' + self._get_device_id(),
'username': 'device',
'password': '加密的设备密钥',
'topics': {
'data': 'agriculture/irrigation/data',
'control': 'agriculture/irrigation/control',
'status': 'agriculture/irrigation/status',
'alarm': 'agriculture/irrigation/alarm',
}
}
def upload_data(self, sensor_data, irrigation_log):
"""上传数据到云平台"""
# 构建标准数据格式
payload = {
'device_id': self.config['client_id'],
'timestamp': time.time(),
'location': self._get_gps_coordinates(),
'sensors': sensor_data,
'irrigation': irrigation_log,
'battery': self._get_battery_level(),
'signal_strength': self._get_signal_strength(),
}
# 数据压缩和加密
compressed = self._compress_data(payload)
encrypted = self._encrypt_data(compressed)
# MQTT发布
try:
self.mqtt_client.publish(
self.config['topics']['data'],
encrypted,
qos=1, # 至少送达一次
retain=False
)
return True
except:
# 网络异常,数据暂存本地
self._store_locally(payload)
return False
def receive_control_command(self):
"""接收云端控制指令"""
# 订阅控制主题
self.mqtt_client.subscribe(self.config['topics']['control'])
# 在回调函数中处理指令
def on_message(client, topic, message):
if topic == self.config['topics']['control']:
command = self._decrypt_data(message)
self._execute_remote_command(command)
return on_message
二、实施与部署方案
1、部署实施步骤
第一阶段:现场勘测与规划(1-2周)
1. 农田地形测绘与分区2. 土壤性质检测3. 水源与电力评估4. 传感器布点规划5. 通信链路测试
第二阶段:设备安装与调试(2-3周)
1. ECM50-A07网关安装:
├── 选择中心位置
├── 防水箱安装
├── 太阳能供电系统
└── 防雷接地处理
2. 传感器网络部署:
├── 土壤传感器安装(深度:20-40cm)
├── 气象站安装(高度:2m)
├── 水位传感器安装
└── LoRa中继部署(如需要)
3. 执行机构安装:
├── 电磁阀安装
├── 水泵控制箱
└── 管路与布线
第三阶段:系统配置与测试(1周)
1. 网关参数配置:
├── LoRa网络参数
├── 灌溉策略设置
├── 通信参数配置
└── 报警阈值设置
2. 云平台对接:
├── 设备注册
├── 数据通道测试
├── 控制指令测试
└── 用户权限配置
3. 系统联调:
├── 全功能测试
├── 压力测试
├── 故障恢复测试
└── 用户培训
2、维护与运维计划
日常维护:
- 每周:检查设备状态,清理传感器
- 每月:校准传感器,检查供电系统
- 每季度:固件升级,系统优化
远程监控:
class RemoteMaintenance:
def check_system_health(self):
"""系统健康度检查"""
metrics = {
'gateway': {
'cpu_usage': self.get_cpu_usage(),
'memory_free': self.get_free_memory(),
'disk_usage': self.get_disk_usage(),
'uptime': self.get_uptime(),
},
'network': {
'lora_signal': self.get_lora_rssi(),
'nodes_online': self.get_online_nodes(),
'packet_loss': self.get_packet_loss(),
},
'power': {
'battery_level': self.get_battery_level(),
'solar_input': self.get_solar_power(),
'power_mode': self.get_power_mode(),
}
}
return metrics
基于ECM50-A07工业级可编程工控机的智慧农业精准灌溉系统,通过创新的"边缘智能+LoRa通信"架构,为现代农业生产提供了一套高效、可靠、易用的完整解决方案。该系统不仅解决了传统灌溉中的水资源浪费问题,更通过智能化管理显著提升了农业生产效率和经济效益。
本方案具备快速部署、易于扩展、维护简便的特点,可广泛应用于大田作物、设施农业、果园、茶园等多种农业场景,是推动农业现代化、实现可持续发展的理想选择。
168