1 原理
按键检测和处理的步骤如下:
1:定时扫描按键(使用定时器定时扫描,也可以用软件延时或者系统心跳之类的方式,总之能保证每次扫描间隔时间固定并且在一个较小的范围即可)。
2:扫描到有按键按下(通常是检测GPIO的电平状态来判断按键是否按下,具体情况需要结合实际硬件电路来看)。
3:开始计时,记录按键持续按下的时间。
4:若按下的时间达到了短按的时间(具体多长的时间为短按由自己定义),选择触发按键处理(按下即触发),或者先记录状态,等按键释放时再触发按键处理(弹起时触发)。
5:按键时间超过短按时间,继续计时。
6:按键时间达到长按时间(具体多长的时间为长按由自己定义),选择触发按键处理(按下即触发),或者先记录状态,等按键释放时再触发按键处理(弹起时触发)。
2 示例代码
该示例使用的GD32,共配置了4个按键,特点如下:
1:按键按下时电平为0,释放时为1。
2:短按时间为30ms。
3:长按时间为1s。
4:短按释放时触发按键处理。
5:长按按下时即触发按键处理。
6:按键扫描和按键处理均放在定时器中断服务函数,若按键处理的时间较长,建议分开操作(按键扫描还是放在中断,按键处理放在其他地方,以免长时间占用中断时间)。
7:按键处理我这里都是留空的,只用串口打印了一句话,表明已经触发了按键处理,具体处理什么东西看实际需求。
注:示例代码仅供参考,还需要按具体需求修改。
2.1 按键实现
key.c:
#include "key.h"#include "main.h"key_t key1;key_t key2;key_t key3;key_t key4;void timer_user_init(void);// 按键初始化void key_user_init(void){ /* enable the key clock */ rcu_periph_clock_enable(KEY1_CLOCK); rcu_periph_clock_enable(KEY2_CLOCK); rcu_periph_clock_enable(KEY3_CLOCK); rcu_periph_clock_enable(KEY4_CLOCK); /* configure key gpio port */ gpio_init(KEY1_PORT, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, KEY1_PIN); gpio_init(KEY2_PORT, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, KEY2_PIN); gpio_init(KEY3_PORT, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, KEY3_PIN); gpio_init(KEY4_PORT, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, KEY4_PIN); timer_user_init(); // 启动定时器,定时扫描按键}// 按键扫描int key_scan(void){ if(READ_KEY1_STATE == KEY_PRESSED && (key1.status == 0)) { if(++key1.debounce > KEY_SHORT_PRESSED) {// 短按 key1.status = 1; // LOG("key1 short pressed.n"); } } else if(READ_KEY1_STATE == KEY_PRESSED && (key1.status == 1)) { if(++key1.debounce > KEY_LONG_PRESSED) {// 长按 key1.status = 2; key1.debounce = 0; // LOG("key1 long pressed.n"); return KEY1_LONG_PRESSED; } } else if((READ_KEY1_STATE == KEY_RELEASED) && (key1.status > 0)) { if(key1.status == 1) {// 短按释放 key1.status = 0; key1.debounce = 0; return KEY1_SHORT_PRESSED; } if(key1.status == 2) {// 长按释放 key1.status = 0; key1.debounce = 0; } } if(READ_KEY2_STATE == KEY_PRESSED && (key2.status == 0)) { if(++key2.debounce > KEY_SHORT_PRESSED) {// 短按 key2.status = 1; } } else if(READ_KEY2_STATE == KEY_PRESSED && (key2.status == 1)) { if(++key2.debounce > KEY_LONG_PRESSED) {// 长按 key2.status = 2; key2.debounce = 0; return KEY2_LONG_PRESSED; } } else if((READ_KEY2_STATE == KEY_RELEASED) && (key2.status > 0)) { if(key2.status == 1) {// 短按释放 key2.status = 0; key2.debounce = 0; return KEY2_SHORT_PRESSED; } if(key2.status == 2) {// 长按释放 key2.status = 0; key2.debounce = 0; } } if(READ_KEY3_STATE == KEY_PRESSED && (key3.status == 0)) { if(++key3.debounce > KEY_SHORT_PRESSED) {// 短按 key3.status = 1; } } else if(READ_KEY3_STATE == KEY_PRESSED && (key3.status == 1)) { if(++key3.debounce > KEY_LONG_PRESSED) {// 长按 key3.status = 2; key3.debounce = 0; return KEY3_LONG_PRESSED; } } else if((READ_KEY3_STATE == KEY_RELEASED) && (key3.status > 0)) { if(key3.status == 1) {// 短按释放 key3.status = 0; key3.debounce = 0; return KEY3_SHORT_PRESSED; } if(key3.status == 2) {// 长按释放 key3.status = 0; key3.debounce = 0; } } if(READ_KEY4_STATE == KEY_PRESSED && (key4.status == 0)) { if(++key4.debounce > KEY_SHORT_PRESSED) {// 短按 key4.status = 1; } } else if(READ_KEY4_STATE == KEY_PRESSED && (key4.status == 1)) { if(++key4.debounce > KEY_LONG_PRESSED) {// 长按 key4.status = 2; key4.debounce = 0; return KEY4_LONG_PRESSED; } } else if((READ_KEY4_STATE == KEY_RELEASED) && (key4.status > 0)) { if(key4.status == 1) {// 短按释放 key4.status = 0; key4.debounce = 0; return KEY4_SHORT_PRESSED; } if(key4.status == 2) {// 长按释放 key4.status = 0; key4.debounce = 0; } } return -1;}// 按键处理void key_handle(void){ static uint8_t key_state; uint8_t i; static uint8_t step = 0; key_state = key_scan(); // 按键扫描 if(key_state == KEY1_SHORT_PRESSED) {// 按键1短按 LOG("key1 short pressed.n"); } else if(key_state == KEY1_LONG_PRESSED) {// 按键1长按 LOG("key1 long pressed.n"); } else if(key_state == KEY2_SHORT_PRESSED) {// 按键2短按 LOG("key2 short pressed.n"); } else if(key_state == KEY2_LONG_PRESSED) {// 按键2长按 LOG("key2 long pressed.n"); } else if(key_state == KEY3_SHORT_PRESSED) {// 按键3短按 LOG("key3 short pressed.n"); } else if(key_state == KEY3_LONG_PRESSED) {// 按键3长按 LOG("key3 long pressed.n"); } else if(key_state == KEY4_SHORT_PRESSED) {// 按键4短按 LOG("key4 short pressed.n"); } else if(key_state == KEY4_LONG_PRESSED) {// 按键4长按 LOG("key4 long pressed.n"); }}/********************** 定时器配置,用于定时扫描按键 *************************/ void TIMER2_IRQHandler(void){ if(SET == timer_interrupt_flag_get(TIMER2, TIMER_INT_UP)) { /* clear channel 0 interrupt bit */ timer_interrupt_flag_clear(TIMER2, TIMER_INT_UP); key_handle(); // 按键扫描并处理 }}void nvic_config(void){ nvic_irq_enable(TIMER2_IRQn, 0, 0);}void timer_config(void){ /* ---------------------------------------------------------------------------- TIMER2 Configuration: TIMER2CLK = SystemCoreClock/18000 = 10KHz, the period is 1s(10/10000 = 1s). ---------------------------------------------------------------------------- */ timer_parameter_struct timer_initpara; /* enable the peripherals clock */ rcu_periph_clock_enable(RCU_TIMER2); /* deinit a TIMER */ timer_deinit(TIMER2); /* initialize TIMER init parameter struct */ timer_struct_para_init(&timer_initpara); /* TIMER2 configuration */ timer_initpara.prescaler = 18000 - 1; // 180MHz / 18000 = 10kHz timer_initpara.alignedmode = TIMER_COUNTER_EDGE; timer_initpara.counterdirection = TIMER_COUNTER_UP; timer_initpara.period = 10 - 1; // 10 * 0.01ms = 1ms timer_initpara.clockdivision = TIMER_CKDIV_DIV1; timer_init(TIMER2, &timer_initpara); /* enable the TIMER interrupt */ timer_interrupt_enable(TIMER2, TIMER_INT_UP); /* enable a TIMER */ timer_enable(TIMER2);}void timer_user_init(void){ /* configure the TIMER peripheral */ timer_config(); /* configure the TIMER2 interrupt */ nvic_config();}
key.h:
#ifndef __KEY_H#define __KEY_H#include "gd32e50x.h"#include "gd32e50x_gpio.h"#define KEY1_SHORT_PRESSED 0#define KEY2_SHORT_PRESSED 1#define KEY3_SHORT_PRESSED 2#define KEY4_SHORT_PRESSED 3#define KEY1_LONG_PRESSED 4#define KEY2_LONG_PRESSED 5#define KEY3_LONG_PRESSED 6#define KEY4_LONG_PRESSED 7#define KEY_PRESSED 0 // 按下时电平为0#define KEY_RELEASED 1 // 按下时电平为1#define KEY_SHORT_PRESSED 30 // 1ms x 30 = 30ms#define KEY_LONG_PRESSED 1000 // 1ms x 1000 = 1s#define KEY1_CLOCK RCU_GPIOB#define KEY1_PORT GPIOB#define KEY1_PIN GPIO_PIN_12#define KEY2_CLOCK RCU_GPIOB#define KEY2_PORT GPIOB#define KEY2_PIN GPIO_PIN_13#define KEY3_CLOCK RCU_GPIOB#define KEY3_PORT GPIOB#define KEY3_PIN GPIO_PIN_14#define KEY4_CLOCK RCU_GPIOB#define KEY4_PORT GPIOB#define KEY4_PIN GPIO_PIN_15#define READ_KEY1_STATE gpio_input_bit_get(KEY1_PORT, KEY1_PIN)#define READ_KEY2_STATE gpio_input_bit_get(KEY2_PORT, KEY2_PIN)#define READ_KEY3_STATE gpio_input_bit_get(KEY3_PORT, KEY3_PIN)#define READ_KEY4_STATE gpio_input_bit_get(KEY4_PORT, KEY4_PIN)typedef struct{ uint16_t debounce; uint8_t status;} key_t;void key_user_init(void);int key_scan(void);#endif
main.c:
#include "main.h"#include "uart.h"#include "key.h"int main(void){ // systick_config(); uart_user_init(); key_user_init(); printf("app init success.n"); while(1) { }}
mian.h:
#ifndef MAIN_H#define MAIN_H#include "gd32e50x.h"#include "gd32e50x_rcu.h"#include "gd32e50x_gpio.h"#include "systick.h"#include "uart.h"#define UART_DEBUG#ifdef UART_DEBUG #define DEBUG(format, ...) printf(format, ##__VA_ARGS__) #define LOG printf#else #define DEBUG(format, ...) #define LOG(format, ...) #endif#endif /* MAIN_H */
382