对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序称为比较。 能够实现这种比较功能的电路或装置称为比较器。

什么是比较器


比较器是将一个模拟电压信号与一个基准电压相比较的电路。比较器的两路输入为模拟信号,输出则为二进制信号 0 或 1,当输入电压的差值增大或减小且正负符号不变时,其输出保持恒定。

什么是比较器

 

比较器工作原理


可以将比较器当作一个 1 位模 / 数转换器(ADC)。运算放大器在不加负反馈时从原理上讲可以用作比较器,但由于运算放大器的开环增益非常高,它只能处理输入差分电压非常小的信号。而且,一般情况下,运算放大器的延迟时间较长,无法满足实际需求。比较器经过调节可以提供极小的时间延迟,但其频响特性会受到一定限制。为避免输出振荡,许多比较器还带有内部滞回电路。比较器的阈值是固定的,有的只有一个阈值,有的具有两个阈值。

 

比较器工作原理

 

 

比较器作用


比较器的两路输入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定。从这一角度来看,也可以将比较器当作一个 1 位模 / 数转换器(ADC)。

 

比较器作用


比较器的性能指标
滞回电压:比较器两个输入端之间的电压在过零时输出状态将发生改变,由于输入端常常叠加有很小的波动电压,这些波动所产生的差模电压会导致比较器输出发生连续变化,为避免输出振荡,新型比较器通常具有几 mV 的滞回电压。滞回电压的存在使比较器的切换点变为两个:一个用于检测上升电压,一个用于检测下降电压,电压门限(VTRIP)之差等于滞回电压(VHYST),滞回比较器的失调电压是 TRIP 和 VTRIP- 的平均值。不带滞回的比较器的输入电压切换点为输入失调电压,而不是理想比较器的零电压。失调电压一般随温度、电源电压的变化而变化。通常用电源抑制比表示电源电压变化对失调电压的影响。
偏置电流:理想的比较器的输入阻抗为无穷大,因此,理论上对输入信号不产生影响,而实际比较器的输入阻抗不可能做到无穷大,输入端有电流经过信号源内阻并流入比较器内部,从而产生额外的压差。偏置电流(Ibias)定义为两个比较器输入电流的中值,用于衡量输入阻抗的影响。MAX917 系列比较器的最大偏置电流仅为 2nA。
超电源摆幅:为进一步优化比较器的工作电压范围,Maxim 公司利用 NPN 管与 PNP 管相并联的结构作为比较器的输入级,从而使比较器的输入电压得以扩展,这样,其下限可低至最低电平,上限比电源电压还要高出 250mV,因而达到超电源摆幅(Beyond-theRail)标准。这种比较器的输入端允许有较大的共模电压。
漏源电压:由于比较器仅有两个不同的输出状态(零电平或电源电压),且具有满电源摆幅特性的比较器的输出级为射极跟随器,这使得其输入和输出信号仅有极小的压差。该压差取决于比较器内部晶体管饱和状态下的发射结电压,对应于 MOSFFET 的漏源电压。
输出延迟时间:包括信号通过元器件产生的传输延时和信号的上升时间与下降时间,对于高速比较器,如 MAX961,其延迟时间的典型值可对达到 4.5ns,上升时间为 2.3ns。设计时需注意不同因素对延迟时间的影响,其中包括温度、容性负载、输入过驱动等的影响。