三相异步电机(Triple-phase asynchronous motor)是感应电动机的一种,是靠同时接入380V三相交流电流(相位差120度)供电的一类电动机,由于三相异步电动机的转子与定子旋转磁场以相同的方向、不同的转速旋转,存在转差率,所以叫三相异步电动机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。接下来,详细为你说下三相电机电流过高的7种情况及解决方法有哪些 三相交流电动机正反转互锁电路的分析
1.三相电机电流过高的7种情况及解决方法有哪些
1电源问题
电源方面使电动机发生过热的原因,有以下几种:
1、电源电压过高
当电源电压过高时,电动机反电动势、磁通及磁通密度均随之增大。由于铁损耗的大小与磁通密度平方成正比,则铁损耗增加,导致铁心过热。而磁通增加,又致使励磁电流分量急剧增加,造成定子绕组铜损增大,使绕组过热。因此,电源电压超过电动机的额定电压时,会使电动机过热。
2、电源电压过低
电源电压过低时,若电动机的电磁转矩保持不变,磁通将降低,转子电流相应增大,定子电流中负载电源分量随之增加,造成绕线的铜损耗增大,致使定、转子绕组过热。
3、电源电压不对称
当电源线一相断路、保险丝一相熔断,或闸刀起动设备角头烧伤致使一相不通,都将造成三相电动机走单相,致使运行的二相绕组通过大电流而过热,及至烧毁。因此,对于三相电机一般不适用熔断器进行保护。
4、三相电源不平衡
当三相电源不平衡时,会使电动机的三相电流不平衡,引起绕组过热。
由上述可见,当电动机过热时,应首先考虑电源方面的原因(软启动、变频器、伺服驱动器亦可看作是电源)。确认电源方面无问题后,再去考虑其他方面因素。
2负载问题
负载方面使电动机过热原因有以下几种:
1、电动机过载运行
当设备不配套,电动机的负载功率大于电动机的额定功率时,则电动机长期过载运行(即小马拉大车),会导致电动机过热。维修过热电动机时,应先搞清负载功率与电动机功率是否相符,以防盲无目的的拆卸。
2、拖动的机械负载工作不正常
设备虽然配套,但所拖动的机械负载工作不正常,运行时负载时大时小,电动机过载而发热。
3、拖动的机械有故障
当被拖动的机械有故障,转动不灵活或被卡住,都将使电动机过载,造成电动机绕组过热。故检修电动机过热时,负载方面的因素不能忽视。
3电机本身问题
1、电动机绕组断路
当电动机绕组中有一相绕组断路,或并联支路中有一条支路断路时,都将导致三相电流不平衡,使电动机过热。
2、电动机绕组短路
当电动机绕组出现短路故障时,短路电流比正常工作电流大得多,使绕组铜损耗增加,导致绕组过热,甚至烧毁。
3、电动机星角接法错误
当三角形接法电动机错接成星形时,电动机仍带满负载运行,定子绕组流过的电流要超过额定电流,乃至导致电动机自行停车,若停转时间稍长又未切断电源,绕组不仅严重过热,还将烧毁。当星形连接的电动机错接成三角形,或若干个线圈组串成一条支路的电动机错接成二支路并联,都将使绕组与铁心过热,严重时将烧毁绕组。
4、电动机线圈接法错误
当一个线圈、线圈组或一相绕组接反时,都会导致三相电流严重不平衡,而使绕组过热。
5、电动机的机械故障
当电动机轴弯曲、装配不好、轴承有毛病等,均会使电动机电流增大,铜损耗及机械摩擦损耗增加,使电动机过热。
4通风散热问题
1、环境温度过高,使进风温度高。
2、进风口有杂物挡住,使进风不畅,造成进风量小。
3、电动机内部灰尘过多,影响散热。
4、风扇损坏或装反,造成无风或风量小。
5、未装风罩或电动机端盖内未装挡风板,造成电动机无一定的风路。
5返修电机问题
返修的电动机启动电流达到66%以上,同时电动机作业频繁,也会造成电流高,产生电动机过热。
6串联电阻问题
绕线式电动机与串接电阻器等不匹配,同时电动机作业频繁,也会造成电流高,产生电动机过热。
7电动机振动问题
电动机振动过大也可能造成电动机电流高,原因及处理方法:
1、转子不平衡——校平平衡
2、带轮不平衡或轴伸弯曲——检查并校正
3、电动机与负载轴线不对齐——检查调整机组的轴线
4、电动机安装不妥——检查安装情况及底脚螺丝
5、负载突然过重——减轻负载
2.三相交流电动机正反转互锁电路的分析
1.按钮互锁电路
在电动机正反转控制电路中通常用的按钮开关有两对触点。一对常闭触点、一对常开触点。按钮互锁就是将正转启动按钮的常闭触点串联到反转启动控制电路中。将反转启动按钮的常闭触点串联到正转启动控制电路中。这种控制方式的优点是,有效的避免了正反转启动按钮同时按下而造成的短路发生。缺点是在进行正反转状态切换时,要先按下停止按钮才能再按另外的一个启动按钮。尽管是这样操作,如果某一个接触器的主触头发生了粘连,在切换另一种状态时也会发生短路的情况。控制原理图如下:
2.接触器互锁电路
接触器互锁就是有效的利用接触器的常闭辅助触点,防止因接触器主触头粘连而发生短路事故。假设某一个接触器的主触头因为电弧的烧伤而发生了粘连。在按下停止按钮后,该接触器的辅助常闭触点不会复位。因此,另一种状态的接触器就不会吸合。在选择启动按钮开关时,只需要有一对常开触点的按钮开关就可以使用。这种控制电路在早期也有一定的应用。控制原理图如下:
3.复合互锁控制电路
由于生产劳动的经验不断的丰富,一种安全可靠的控制电路就应运而生。那就是按钮和接触器复合互锁电路。它集前面两种控制电路的优点于一身。完全有效地保障了操作人员和设备的安全。下面两张图为正反转模拟运行时控制回路电流的走向。以及接触器和电机运行的方向。
复合互锁正转控制电路
4.电动机正转启动控制流程
当按下正转启动按钮SB2时,电流通过保险FU2→热继电器常闭触点95,96→停止按钮SB1常闭触点11、12→正转启动按钮SB2常开触点13、14→反转启动按钮SB3常闭触点11、12→反转接触器KM2常闭辅助触点11、12→正转接触器KM1线圈A1、A2→零线形成回路。正转接触器KM1吸合。电动机正转。与此同时,正转接触器KM1的常开辅助触点也吸合形成自锁。KM1的常闭辅助触点11、12断开形成互锁。松开正转启动按钮后,控制回路的电流则通过KM1的常开辅助触点13、14形成回路。电动机继续正转运行。
复合互锁反转控制电路
5.电动机正转切换反转控制流程
电动机在正转运行的时候按下反转启动按钮SB3时,反转启动按钮SB3的常闭触点11、12首先断开,切断了正转接触器KM1线圈的供电回路。使正转接触器KM1线圈失电。从而KM1的主触头和常闭辅助触点11、12复位。电流通过保险FU2→热继电器常闭触点95,96→停止按钮SB1常闭触点11、12→反转启动按钮SB3常开触点13、14→正转启动按钮SB2常闭触点11、12→正转接触器KM1常闭辅助触点11、12→反转接触器KM2线圈A1、A2→零线形成回路。反转接触器KM2吸合。电动机反转。与此同时,反转接触器KM2的常开辅助触点也吸合形成自锁。松开反转启动按钮后,控制回路的电流则通过KM2的常开辅助触点13、14形成回路。电动机继续反转运行。
控制线路容易发生的故障
在电动机正反转控制电路中,容易发生的故障部位有正反转启动按钮转、正反转接触器的主触头、热继电器、电动机轴承等。为什么以上部位容易发生故障呢?由于启动按钮是需要经常操作的部件,在操作的过程中力度掌握不好就很容易损坏按钮开关。接触器的主触头在吸合和断开的时候很容易被电弧烧伤。启动电流大也很容易使热继电器的双金属板发生疲劳而产生误动作。电动机在正反转的切换时会产生很大的扭矩而损伤轴承。