典型的二进制格雷码(Binary Gray Code)简称格雷码,因1953年公开的弗兰克·格雷(Frank Gray,18870913-19690523)专利“Pulse Code Communication”而得名,当初是为了通信,现在则常用于模拟-数字转换和位置-数字转换中。

1.格雷码编码规则

格雷码编码规则如下:

典型的二进制格雷码(Binary Gray Code)简称格雷码,因1953年公开的弗兰克·格雷(Frank Gray,18870913-19690523)专利“Pulse Code Communication”而得名,当初是为了通信,现在则常用于模拟-数字转换和位置-数字转换中。法国电讯工程师波特(Jean-Maurice-Émile Baudot,18450911-19030328)在1880年曾用过的波特码相当于它的一种变形。1941年George Stibitz设计的一种8元二进制机械计数器正好符合格雷码计数器的计数规律。

 

格雷码编码规则

(图片来自于网络)

 

2.格雷码转二进制公式

格雷码转二进制公式如下;

转换方法


递归生成码表


这种方法基于格雷码是反射码的事实,利用递归的如下规则来构造:


1位格雷码有两个码字


(n+1)位格雷码中的前2n个码字等于n位格雷码的码字,按顺序书写,加前缀0


(n+1)位格雷码中的后2n个码字等于n位格雷码的码字,按逆序书写,加前缀1


n+1位格雷码的集合 = n位格雷码集合(顺序)加前缀0 + n位格雷码集合(逆序)加前缀1

 

法国工程师Jean-Maurice-Émlle Baudot在1880年曾用过的波特码是典型格雷码的一种变形。


Gray Code是由贝尔实验室的Frank Gray在1940年代提出的,用来在使用PCM(Pusle Code Modulation)方法传送讯号时避免出错。
Frank Gray于1947年申请、1953年获得批准的专利“Pulse Code Communication”,当初是为了通信,后来则常用于模拟-数字转换中。
1941年George Stibitz设计过一种8元格雷码计数器。

 

3.格雷码的特点及作用

格雷码的特点及作用如下:

在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code),另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码或反射码。 [2]  在数字系统中,常要求代码按一定顺序变化。例如,按自然数递增计数,若采用8421码,则数0111变到1000时四位均要变化,而在实际电路中,4位的变化不可能绝对同时发生,则计数中可能出现短暂的其它代码(1100、1111等)。在特定情况下可能导致电路状态错误或输入错误。使用格雷码可以避免这种错误。格雷码有多种编码形式。
格雷码(Gray Code)曾用过Grey Code、葛莱码、格莱码、戈莱码、循环码、反射二进制码、最小差错码等名字,它们有的不对,有的易与其它名称混淆,建议不要再使用这些曾用名。

 

格雷码属于可靠性编码,是一种错误最小化的编码方式。因为,虽然自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,能使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它在相邻位间转换时,只有一位产生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。由于这种编码相邻的两个码组之间只有一位不同,因而在用于方向的转角位移量-数字量的转换中,当方向的转角位移量发生微小变化(而可能引起数字量发生变化时,格雷码仅改变一位,这样与其它编码同时改变两位或多位的情况相比更为可靠,即可减少出错的可能性。


格雷码是一种绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。


由于格雷码是一种变权码,每一位码没有固定的大小,很难直接进行比较大小和算术运算,也不能直接转换成液位信号,要经过一次码变换,变成自然二进制码,再由上位机读取。


典型格雷码是一种采用绝对编码方式的准权码,其权的绝对值为2^i-1(设最低位i=1)。


格雷码的十进制数奇偶性与其码字中1的个数的奇偶性相同。